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Abstract 
 
Traditional association rule mining algorithms assume that 
data instances are independent and identically distributed 
(IID) [29]. In statistical relational learning (SRL), however, 
relationships between instances can be leveraged to improve 
the performance of learning algorithms [2]. Higher-order 
association rule mining is an example of a SRL approach that 
does not make the IID assumption, but instead discovers 
itemsets that cross record boundaries [21]. Empirical analysis 
shows that higher-order methods perform especially well on 
small datasets as they are able to capture the variability of the 
underlying data distribution more readily than traditional 
methods [11]. In a distributed environment, however the 
discovery of higher-order itemsets reveals significant 
information about the nature of disparate data sources [21]. 
Preserving privacy in a setting in which data instances are 
treated as nodes in a graph rather than independent entities is 
an open problem in privacy research that has only recently 
received attention in the data mining community [24]. In this 
paper we propose a novel privacy-enhancing distributed 
higher-order ARM algorithm, PE-DiHO ARM. PE-DiHO 
ARM discovers itemsets from distributed data with a hybrid 
(non-horizontal, non-vertical) distribution while significantly 
limiting the amount of private data that is revealed. To 
demonstrate the validity of the approach we compare it to a 
non-privacy enhancing higher-order ARM algorithm [21] in 
an evaluation framework based on supervised learning [23]. 
Experimental results confirm that privacy can be 
significantly enhanced during the computation of higher-
order itemsets in a distributed environment without 
significantly impacting performance. In future work we plan 
to apply these techniques to data provided by our law 
enforcement partners. 
 
1   Introduction 
 
There are numerous situations in which not all data can be 
stored in a central site due to storage constraints or privacy 
concerns. This is an especially important problem for the law 
enforcement domain where there are numerous legal 
restrictions on the sharing of information, while at the same 
time records for the same individual or legal entity may exist 

in the databases of multiple jurisdictions. Recent work in 
distributed data mining [4, 36] and privacy-enhancing data 
mining [1, 8, 18, 19, 22, 31, 32, 33] has addressed mining 
distributed data of this nature. Naturally, the solutions 
proposed so far also have limitations. Existing approaches, 
for example, deal with either horizontally or vertically 
fragmented data and assume the existence of a global 
schema. In a real-world application, on the other hand, often 
no global schema is available. In addition, because different 
sites maintain different schemas for storing data, it is often 
impossible to guarantee purely vertical or horizontal 
fragmentation. This is especially the case when dealing with 
information extracted from textual data sources in the form 
of named entities stored in database records. 

Another limitation in current solutions is the need for 
approaches to enhance privacy for data mining algorithms 
which do not make the assumption that data instances are 
independent and identically distributed (IID). This issue is 
related to the problem of enhancing privacy in statistical 
relational learning, which exploits similarity links between 
data instances [12]. It is also related to enhancing privacy 
when the input data is modeled as a graph – a problem which 
has only recently attracted the attention of researchers [24]. 
While traditional association rule mining algorithms assume 
there are no correlations between instances [29], in contrast a 
relational algorithm exploits links between instances. This 
allows a dataset to be treated as a graph in which data 
instances are nodes and links are edges. In [21] for example, 
Li et al. present DiHO ARM, a relational distributed 
association rule mining algorithm which exploits not only 
information within records but also links between records. 
We refer to these links as higher-order because they form the 
basis for itemsets that cross record boundaries. Recent work 
in our lab shows that such higher-order information captures 
the variability of the underlying data more quickly than 
equivalent methods which make the IID assumption. For this 
reason, higher-order algorithms are especially useful for 
small datasets [11].  

Indeed, manual higher-order approaches are standard 
operating procedure in real-world law enforcement 
operations. In 2003, for example, the DEA and the Royal 
Canadian Mounted Police announced the arrests of over 65 
individuals in ten cities throughout the United States and 
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Canada in an international methamphetamine investigation 
[39]. The arrests were the result of an 18-month international 
investigation using manual higher-order association 
techniques that linked documents through addresses, phone 
numbers, etc. In effect, individuals who appear in different 
documents can be linked as partners in crime. 

Motivated by the evident utility of higher-order 
algorithms for law enforcement, the authors are involved in 
an ongoing collaboration with several law enforcement 
agencies, including the Bethlehem, PA Police Department 
(BPD), the Public Safety Department of the Port Authority of 
New York and New Jersey and the Richmond, VA Police 
Department. In conjunction with the BPD, we have collected 
hundreds of records from a high-profile murder case. We are 
using the collection to establish a secure, anonymized, 
annotated ground truth data repository for use in evaluating 
different algorithms using higher order links. We are also 
working closely with the Port Authority Public Safety 
Department to provide advanced data and visual analytics 
capabilities in support of the twin mission of fighting crime 
and preventing terrorism. 

The DiHO ARM algorithm, however, is not private and 
thus is not applicable in situations where privacy restrictions 
apply, and, in particular, in the law enforcement domain. 
Preserving privacy with higher-order association rules is 
inherently more difficult than traditional privacy-enhancing 
association rule mining. Intuitively, in the higher-order case 
the algorithm leverages more information from the dataset 
[2], and, hence, more information needs to be privately 
exchanged between the parties in the computation. Also, 
because records cannot be treated independently, many of the 
computations become more complex.  

In this article we present PE-DiHO ARM, a privacy-
enhancing algorithm for mining higher-order itemsets in a 
distributed environment. The algorithm is privacy-enhancing 
in the sense that it significantly reduces the amount of private 
data revealed during the computation. Like the original 
DiHO ARM algorithm [21], it can deal with data which is 
neither horizontally nor vertically distributed. Another 
contribution of PE-DiHO ARM is a method for privacy-
enhancing construction of a graph from distributed data.  
We also address the problem of privacy-enhancing path 
generation when the total number of nodes in the distributed 
graph is unknown and the path length is limited. 

The article is organized as follows. In the following section 
we describe related work in the field of privacy-enhancing 
data mining. In Section 3 we present our approach to 
enhancing the privacy of higher-order itemset mining in a 
distributed environment, including an example run as well as 
an explanation of our methodology of evaluation. Section 4 
presents experimental evidence for the validity of PE-DiHO 
ARM, followed by Conclusions and Future Work in Section 
5. 

 

2   Related Work 
 

There has been a considerable amount of work on 
privacy-enhancing techniques for data mining. Research in 
this field naturally falls into two categories – data 
perturbation approaches and secure multi-party computation 
approaches.  There is some very interesting recent work in 
the latter area dealing with graph data. We consider this in 
Section 2.2.1 below. 

 
2.1   Perturbation Approaches. The data perturbation 
perspective assumes that not even the data mining algorithm 
is allowed access to the private data. The general method 
used in data perturbation algorithms follows three basic 
steps: 

 
1. Private data is randomized, so that individual data values 

cannot be easily estimated. 
2. The original distribution of the private data is 

reconstructed using information about the randomization 
technique used. 

3. Analysis is performed on the reconstructed distribution. 
 

It is important to note that only the distribution of the 
original data is reconstructed. The actual data values remain 
inaccessible.  It should also be mentioned that data mining 
methods which use perturbation are not exact, i.e. they give 
only approximations of the rules that would be discovered 
from the original data. 

Agrawal and Srikant [1] propose a data perturbation 
approach to decision tree learning with numeric data. The 
original private values are perturbed by adding a random 
number from some distribution. In [20] the utility of additive 
noise for privacy applications is questioned and it is pointed 
out that the noise can be easily filtered out. Hence, Liu et al. 
[28], and Oliveira and Zaiane [25] propose stronger methods 
based on multiplication by a random matrix. Nevertheless, 
techniques such as independent component analysis can still 
make these perturbation methods vulnerable.  

Evfimievski et al. [8] further develop the randomization 
method proposed by Agrawal et al. [1] and generalize it to 
apply to categorical data and association rule mining in 
particular. They propose a mathematical model of a privacy 
breach as the probability of discovering a property of the 
original data based on the randomized data. Then they define 
a class of randomization operators which apply the same 
randomization algorithms to each transaction in the database 
being mined and do not use item-specific information.  

Data perturbation approaches have the advantage of 
usually being more efficient than cryptographic techniques. 
However, the privacy guarantees they offer are not as strict 
[33]. 
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2.2   Secure multiparty computation.  

The secure multi-party computation perspective on 
enhancing privacy assumes a distributed environment in 
which a number of parties want to perform a data mining task 
on their combined data but no party wants to compromise its 
privacy. Secure multi-party computation approaches are not 
concerned with hiding data from the data mining algorithm. 
These methods are exact: they usually derive precisely the 
same models of the data a non-privacy preserving algorithm 
would produce. 

Secure multi-party computation itself is a cryptographic 
technique which allows multiple parties to compute a 
function without revealing anything but the final output. 
While there are general techniques to achieve this [14, 34], 
their computational and communication complexity for large 
inputs is usually prohibitive for practical use in data mining 
applications. Therefore, specific techniques tailored to data 
mining and data analysis algorithms are needed.  
 
2.2.1   Privacy-preserving analysis of graph data.  
Some very recent work that is highly relevant to our research 
seeks to apply the secure multi-party computation paradigm 
to graph data. Treating data instances as nodes in a graph 
inherently violates the IID assumption and poses new 
challenges for privacy researchers.  These are the same 
challenges that we face with higher-order information. 

There has been some recent work addressing the problem 
of preventing re-identification of nodes or edges in an 
anonymized social network [15, 37]. This work, however, is 
orthogonal to the problems we address. 

Brickell and Shmatikov [3] propose privacy-preserving 
algorithms based on secure multiparty computation for 
several classical graph problems: all-pairs shortest distance, 
all-pairs shortest path, and single source shortest distance. 
Their algorithms are designed to work with two parties who 
share the set of nodes and the set of edges of a graph, but 
associate different weights with the edges. The protocols do 
not extend to a setting in which nodes and/or edges are 
partitioned among sites participating in the computation.  

An online version of the popular link analysis algorithm 
HITS is developed by Duan et al. in [6]. One goal of the 
method is to address link analysis in a setting in which the 
graph structure is implicit in a set of documents and not 
explicitly defined. The authors also propose a privacy-
enhancing version of their algorithm, based on evaluating dot 
products using homomorphic encryptions.  He et al. follow a 
similar approach in [16]. They reduce the problem of link 
discovery to finding the transitive closure of a distributed 
graph by raising the distributed adjacency matrix to an 
appropriate power. The lengths of paths are ignored. Both He 
et al. [16] and Duan et al. [6] assume that the set of nodes of 
a directed graph is partitioned among k sites and each site 
knows the total number n of nodes in the graph and all edges 
to and from its local nodes. Without these assumptions, a 

matrix-based approach is not feasible. Note, however, that 
the total number of nodes can give significant information 
about other users’ data when the number of participating sites 
is small. 

While Duan et al. [6] recognize both the usefulness of 
analyzing a graph constructed from document data and the 
need for doing this in a privacy-enhancing way, they do not 
address the issue of securely detecting links between 
documents belonging to two different sites. To the best of our 
knowledge, to-date the problem of privacy-enhancing 
construction of a graph from distributed data has not been 
addressed in the literature. 
 
2.2.2   Traditional privacy-preserving data mining.  
The study of privately building and analyzing graph models 
of data is still in its infancy. However, it can benefit from 
substantial prior work in preserving privacy with traditional 
data mining algorithms using secure multi-party 
computation. We present some of the results in this field that 
are relevant to our work. 

Kantarcioglu et al. [6] propose a secure multi-party 
computation approach to association rule mining from 
horizontally distributed data. The authors assume parties in 
the computation follow the semi-honest model [13]. In this 
model, each party is unwilling to share its own data, but 
agrees to follow a common communication protocol. 
Furthermore, each party is free to use what it sees during 
execution of the protocol to compromise security. The 
protocol proposed in [18] requires every party to encrypt its 
itemsets using a commutative encryption algorithm. Itemsets 
are then all aggregated in two phases: first at two sites and 
then at one site, in order to minimize the disclosure of private 
information about the number of common itemsets between 
sites. Then for each itemset each site locally computes the 
difference between the support of the itemset and the 
minimum support threshold. Finally, large itemsets are 
determined using Yao’s general secure two-party evaluation 
protocol [34]. 

A different method is necessary for privacy-enhancing 
distributed association rule mining in vertically partitioned 
data. One such method is offered by Vaidya and Clifton [32]. 
They consider the two-party Boolean case and model each 
attribute, or column in the distributed database, as a binary 
vector; then, the support of an itemset is computed as the dot 
product of the vectors corresponding to each item in the 
itemset. In this model the problem of finding all frequent 
itemsets becomes equivalent to the problem of securely 
computing a dot product of two vectors. To solve this 
problem, the authors propose a secure scalar product protocol 
with linear communication cost.  

The secure multi-party computation perspective addresses 
the problem of mining in a distributed environment. 
However, the methods discussed above reveal a common 
trend: they deal with either horizontal or vertical distribution 
of the data. While these two scenarios are useful 
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theoretically, they are often not representative of real-world 
datasets. When data comes from heterogeneous sources, it is 
very likely that there will be no global schema available. 
Integration of data in this case is an open research problem 
[27]. Related to this, sites will neither have records 
containing the same set of items nor will they have values for 
the same set of attributes. 

We term distribution of data which is neither horizontal 
nor vertical hybrid distribution. More precisely, in a hybrid 
distribution each site has information about a subset of the 
rows and a subset of the columns of the full dataset. Current 
secure multi-party computation methods do not address the 
problem of hybrid distribution of the data. Therefore, new 
methods for privacy-enhancing mining of hybrid data need to 
be developed. 
 
2.2.3   Privacy with higher-order information. Within the 
context of statistical relational learning, another issue noted 
in the Introduction that needs to be addressed is the problem 
of enhancing privacy when dealing with higher-order 
associations between items in a dataset – associations that 
cross record boundaries [21]. (As noted previously the use of 
higher-order associations is based on the assumption that the 
data instances are not IID.) The higher-order association rule 
mining algorithm presented in [21] (DiHO ARM) has been 
developed quite recently and to the best of our knowledge, 
to-date no privacy-preserving or privacy-enhancing solutions 
for higher-order ARM have been proposed. DiHO ARM is 
based on building a graph model of the input data, and 
enhancing its privacy is related both to the more traditional 
privacy-preserving data mining methods as well as to the 
relatively new field of private graph data analysis discussed 
above. A privacy enhancing version of DiHO ARM 
necessarily must address the issues of securely detecting 
links between records belonging to different sites as well as 
private enumeration of distributed paths with a limited 
maximal path length. 

 
3   Approach 
 
3.1 Homomorphic encryption schemes. One of the most 
important cryptographic primitives utilized in our approach 
to privacy-enhancing distributed higher-order ARM is 
homomorphic encryption. Homomorphic encryption schemes 
are semantically secure public-key systems with the 
following properties: 

 
1. There exists an addition operation , such that 

; 
2. There exists a multiplication-by-constant operation , 

such that , where c is a constant. 
 

Both the addition and the multiplication operations are 
efficient and work without knowledge of the private key. A 
number of homomorphic cryptosystems exist, including 
Pallier [29] and ElGamal [10]. ElGamal supports the 
additional property of rerandomization: given an encryption 
of a plaintext, a different encryption can be computed which 
decrypts to the same plaintext. 

 
3.2 Latent higher-order itemset mining. Our approach to 
privacy-enhancing distributed higher-order itemset mining is 
based on the DiHO ARM LHOIM (Latent Higher Order 
Itemset Mining) algorithm proposed in [21]. This algorithm 
is based on the following definitions: 

 
DEFINITION 1. Two items a and b are related by co-

occurrence in record r if both and . The relation 
is denoted . 

 
DEFINITION 2. Two items are nth-order associated if 

, .  
 
DEFINITION 3. A latent itemset I is a set of items such that 

for any two items a and b ( ) a and b are nth-order 
related for some . 

 
DEFINITION 4. A link group is a sequence of records 

, s.t. each pair of consecutive records in the 
sequence share at least one item. It is denoted as 

, where Ij is the set of 
common items in rj and rj+1. A link group can also be 
interpreted as a set of latent itemsets generated by the same 
record sequence. The size of the link group is . The 

order of the link group is the number of records, n. 
 
The LHOIM algorithm creates a higher-order input space 

of link groups in two steps, which are also followed by our 
privacy-enhancing version of the algorithm: 

 
1. A graph of records with common items is constructed. 
2. All non-cyclical paths in the graph up to a certain 

length are enumerated. Each path defines a link group.  
 
The link group space thus generated can be used as input 

to traditional ARM algorithms. We now proceed to describe 
how abstract graph generation and path enumeration can be 
performed in a privacy-enhancing manner. 
 
3.3 Abstract Graph Generation. The key insight in this step 
of the algorithm is that the problem of constructing a graph 
of higher-order links between records in a distributed 
database is reducible to the problem of securely finding set 
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Input: DBi; Output: Abstract graph; 

1. Construct local graph; 
2. for each rj in DBi 
3.  Pj := ComputePolynomial(rj); 
4.  for dest := myrank..N 
5.   ISend Enc(Pj) to dest;  
6. done := 0; 
7. while done < N-1 
8.  Recv msg from any src; 
9.  Switch(msg.type) 
10.  case COEFFS: 
11.   for each rk in DBsrc 
12.    for each il in rk 
13.     Tl = Evaluate polynomial;  

14.    ISend T to src; 
15.  case RESULTS: 
16.   write to adjacency list; 
17.   done++; 
18.  case EVALS: 
19.   Decrypt and count 0’s; 
20.   Write to adjacency list; 
21.   ISend results; 
22.   done++; 

intersections. If each record in the database is defined as a set 
of items , then, by definition, two records 
are connected by a second-order link iff their set intersection 
is non-empty: . The algorithm 
which is presented in Figure 1 is based on an extension of the 
private set intersection protocol of Freedman et al. [9]. 
Unlike [9], our algorithm uses asynchronous communication 
to compute pairwise set intersections between an arbitrary 
number of sites. 

 
 

An important precondition of this algorithm is that all 
items on all sites need to be uniquely and consistently 
encoded as integers. This makes the numerical manipulations 
as well as the encryptions possible. A cryptographic hash 
function, such as those discussed in [7], can be used to map 
strings to integers in a way that appears random. In the 
random oracle model, such hash functions do not 
compromise security [7, 36]. Also, for a large enough 
domain size (1024 bits is sufficient for practical purposes) 
the probability of collisions is exponentially small, which 
makes the hash function a good approximation of a perfect 
hash function [7]. 

The algorithm in Figure 1 runs on each participating site. 
We assume that the database is distributed among N parties. 
As noted in the Introduction, the distribution of the data can 
be hybrid. The share of the database owned by party i is 
denoted as DBi. While communicating with site j, site i can 
assume one of two roles – it can be either Alice or Bob. We 
note that the same site i can act as Alice in relation to site j 

and as Bob in relation to some other site k . The output of the 
algorithm does not depend on the exact assignment of roles. 
For the sake of simplicity, in the pseudocode in Figure 1 the 
site with higher rank always acts as Bob. However, more 
sophisticated schemes can be used to better balance the roles 
a site takes. 

In step 3, Alice computes a polynomial for each of its 
records via interpolation; the roots of the polynomial are 
equal to the integers to which items in the record are mapped. 
In the loop in step 4, Alice sends homomorphic encryptions 
of the coefficients of the polynomial to all sites which will 
act as Bob in relation to her. 

Note that the degree of Pj is equal to the number of items 
in Alice’s record. In order not to reveal this information to 
Bob, Alice can expand all polynomials it sends to a uniform 
degree. In order to do this, Alice can multiply Pj with 
polynomials of the first degree which do not have integer 
roots, e.g., 3x+2. Each multiplication by a linear component 
would increase the degree of Pj by one. This transformation 
does not introduce any new integer roots to Pj. Because 
Bob’s items are mapped to integer values, the outcome of the 
algorithm would not be affected by the expansion, because 
none of the newly introduced roots can coincide with values 
of items in Bob’s records. 

The actions of Bob upon receiving the coefficients of the 
polynomials from Alice are in lines 10-14. Using the 
homomorphic encryption scheme, Bob can evaluate Pj with 
the integer values of the items in his own records. The 
resultant values are each multiplied with a random number, 
so that Alice cannot recover the original value and solve the 
equation to discover Bob’s items. To hide the size of his 
records, Bob can pad the vector of evaluations T with non-
zero values encrypted with Alice’s public key. 

Upon receiving the evaluations of Pj  from Bob, Alice can 
decrypt them, and, for each of her records, discover if there is 
a higher order link from it to a record belonging to Bob. This 
part of the algorithm is found in lines 18-22. In lines 15-17, 
Bob receives the results from Alice and saves them.  

During the execution of the protocol, each site learns the 
foreign records to which its own records are linked. Sites also 
learn the size of the intersection between any pair of records, 
which is equal to the number of 0’s in T. In extreme cases 
this allows one site to learn the contents of some of the other 
site’s records. More precisely, suppose that record r1 links to 
record r2 and . Then, 

. 

In one case, if record r1 contains a single item i, it follows 
that r2 also contains i. In another case, if the size of the 
intersection between the records is equal to the size of r1, 
then the owner of r1 will know that r2 is a superset of r1. In 
both cases the probability in the equation above becomes one 
(1). The rest of the information exchanged between Alice and 

Figure 1. Abstract graph generation 
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Bob does not compromise privacy: by the semantic security 
of encryption, the coefficients Bob receives can be simulated 
as random numbers. Also, the non-zero values decrypted by 
Alice in T appear random because they are either multiplied 
by a random number or are random padding values. 

After the completion of the algorithm, each site’s graph is 
augmented with weighted (by intersection size) links to 
records belonging to foreign sites. Each link points to an ID 
number of a record on some other site. The algorithm 
essentially creates distributed adjacency lists on each site. 
For this reason, we term the graph created by the algorithm a 
distributed graph and the paths in this graph which contain 
vertices from more than one site distributed paths. All other 
paths are considered local paths. Let us also term the 
maximal local subpath of a distributed path a local section of 
the distributed path. 
 
3.4   Security enhancement. Since, as noted, disclosing the 
size of the intersection between two records can lead to 
significant privacy breaches, we propose an enhancement to 
our algorithm which leaks only the existence of an edge. Let, 
as before, Bob be the site that receives an encryption of the 
polynomial constructed by Alice. In the original algorithm in 
Figure 1, Bob sends back a vector T of encrypted evaluations 
of the polynomial, padded with encrypted non-zero values. 
If, however, some of the padding values are zeroes, Alice 
would not know the exact size of the intersection. If Alice 
counts k zeroes upon decryption, and Bob has inserted l zero 
values, the two sites can use a Yao protocol to securely find 
if k < l. A positive answer implies the existence of an edge. 
Comparing the two numbers is simply an instance of the 
millionaire problem [35]. Efficient solutions exist for this 
problem with communication complexity logarithmic in the 
domain size of k and l [17]. Note that this method is more 
efficient than the more general solution in [9], which requires 
added communication linear in the size of the two records. 
These savings are helpful as the datasets involved in the 
computation can be very large in size. 

Bob can choose the number of zeros to be added from 
some probability distribution. Furthermore, Bob can estimate 
the expected proportion of items shared between any two 
records from its local graph; let this proportion be ε. If the 
expected proportion of zeros inserted in T by Bob is (1-2ε)/2, 
the total expected number of zeros counted by Alice would 
be half the number of elements in T, assuming a certain 
regularity of the data. Under these assumptions, the number 
of zeroes can be simulated only using the length of the vector 
T, which can be treated as a global parameter. Even if the 
regularity assumption is not entirely met, the amount of 
private information revealed is still significantly reduced, 
while adding communication cost only logarithmic in the 
size of the records1. 

                                                           
1 As of the time of writing this security enhancement was still being 
implemented in the PE-DiHO ARM framework. 

 
3.5 Path Enumeration. Our approach is based on a 
distributed depth-first enumeration of paths [26]. Each site 
performs a depth-first enumeration in the same way it would 
with a non-distributed graph. Each local path is assigned a 
numerical ID. When the enumeration reaches a foreign node, 
the enumerating site takes the ID of the path that was 
discovered just before reaching the foreign node, encrypts it, 
and sends it, along with the foreign node information, to the 
owner of the foreign node. Effectively, a site transfers 
responsibility for the enumeration of the rest of the path to 
another site. 

When a site receives information for one of its nodes, it 
starts a depth-first enumeration from this node. If a foreign 
node is reached again, the site follows the same procedure as 
before, adding the encrypted ID of its own local subpath to 
the list it received. The site assigns a numerical ID to each 
path it discovers and broadcasts the ID along with the list of 
encrypted sub-path ID’s it received. The site announcing the 
numerical ID should also make sure each ID is unique2. Each 
party in the computation can decrypt the ID’s which the party 
itself has encrypted, and only them. As a result, each site will 
know which of its own vertices are part of a distributed path, 
recognized by a unique ID number. 

                                                           
2One way to handle this is to query a central site which returns a global 
numerical ID. 

Input: G; MaxL, MaxSP 
Output: Paths in G 
 
forall vertex i and foreign calls to i 
 Insert i in Path; 
 Output(); 
 while 0 < Path.length 
  if  adjacent vertices not in Path 
    AND Path.length <= MaxL 
   v := adjacent vertex not in Path; 
   if v is not local AND 
     SubPaths.length < MaxSP then 
    Add Enc(Path.ID) to SubPaths; 
    Send {SubPaths,v} to v.owner; 
   else 
    Insert v in Path; 
    Output(); 
  else 
   Set Path.last to the next vertex 
adjacent to its parent or remove 
Path.last; 
 
function Output() 
 if SubPaths  then 
   Add Path to SubPaths; 
  Broadcast {SubPaths, GlobalID}; 
 else 
  Save Path with local ID; 
 

Figure 2. Path Enumeration 
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The algorithm in Figure 2 takes three inputs: the 
distributed graph G produced by the algorithm in Figure 1 
and the two parameters: MaxL, which is the maximum 
number of vertices for a local path or a local subpath of a 
distributed path, and MaxSP, which is the maximum number 
of local sections of a distributed path. These two parameters 
are necessary to limit the time complexity of the algorithm.  

The algorithm will enumerate all local paths of length less 
than or equal to MaxL and distributed paths not longer than 

. However, not all distributed paths up to 
that length will be enumerated. For example, if MaxL = 
MaxSP = 2, distributed paths can reach length four, but some 
paths of length four can reside on three or four different sites 
and will not be enumerated. The problem can be easily 
solved by using one global maximum path length that is 
decreased each time a vertex is added and is sent to the 
foreign party together with the list of subpaths. However, 
doing this would reveal additional information – for paths 
which consist of two sections, the two sites which share the 
path will each know how long the path is on the other site. 

For shorter maximal path lengths, all paths can be 
discovered by running the algorithm multiple times with 
different values for MaxL and MaxSP. For example, two runs 
can generate all paths of length two. One run with MaxL=2 
and MaxSP=1 will generate all local paths, and a second run 
with MaxL=1 and MaxSP=2 will generate all distributed 
paths. We can do the same with paths of length three, but the 
situation is more complicated. The four runs needed in this 
case are: 

     Site Alice Site Bob 
(1) MaxL=3; MaxSP=1 MaxL=3; MaxSP=1 
(2) MaxL=1; MaxSP=2 MaxL=2; MaxSP=2 
(3) MaxL=2; MaxSP=2 MaxL=1; MaxSP=2 
(4) MaxL=1; MaxSP=3 MaxL=1; MaxSP=3 

 
In this scheme, run (1) generates all local paths; run (2) 

generates paths with one vertex on Alice and up to two on 
Bob; run (3) generates paths with one vertex on Bob and up 
to two on Alice; run (4) generates paths with three sections, 
each with one vertex. However it appears that there is no 
general way to do this for an arbitrary maximal path length. 
In particular, when the maximal path length is five and we 
have two sites, there can be paths which have three sections: 
a one-vertex section on site Alice, a two-vertex section on 
site Alice, and a two-vertex section on site Bob. In order to 
enumerate such paths, we need to set MaxSP=3 and MaxL=2 
on both sites. With these parameters we will go beyond the 
maximal path length of five and will enumerate some paths 
of length six. 

Therefore, for longer maximum path lengths and more 
nodes, the basic trade off we face is: a) enumerate all paths 
up to a certain length in one run but reveal additional private 
information; b) have stronger privacy guarantees, but 

enumerate a subset of all paths of length up to 
. 

Except for the local and distributed paths in G, each site 
participating in the computation also learns how many 
distributed paths include each of the party’s local vertices. 
Also, each site knows how many local sections a distributed 
path has and to which sites they belong. If the encryptions of 
the subpath ID’s are rerandomized, sites cannot tell if two 
distributed paths share a local section on a foreign site. These 
disclosures are unavoidable when the output is presented as a 
set of distributed paths. 

 
3.6   Example Run. We will now illustrate our approach 
with a simple example. Let’s assume the following 
distributed database: site Alice has two records – record 1 
with items ACD and record 2 with items ACDF; site Bob has 
one record – record 1 with items AE. Alice and Bob map 
item A to 10, C to 20, D to 30, E to 40, and F to 50. 

Alice and Bob construct the local parts of their graphs 
shown in Figure 3. Nodes in the figure represent records, and 
edges represent second-order links. Each edge is labeled with 
its weight, which is equal to the size of the intersection 
between the records it joins. 

 

 
Figure 3. Local graphs 

 
For record 1, Alice computes the polynomial: 
 

 
 
Alice sends the encryptions of the coefficients 1, -60, 

1100, and -6000 to B.  Bob in turn computes: 
 

. 
 
Here r1 and r2 are random numbers. Alice decrypts each of 

the components of vector T and gets one zero and other, 
random numbers. Thus, Alice concludes that record 1 is 
linked to a record in Bob with 1 common item. After 
repeating the same steps for record 2 in Alice, we get the 
final distributed graph shown in Figure 4. 

 

Local graph of Alice 

ACD ACDF 

Local graph of Bob 

AE 

3 

Figure 2. Path Enumeration 
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Figure 4. Distributed graph 

Site Alice starts the depth-first search at ACD, and lists 
path ACD with ID 101 and path ACD-ACDF with ID 102. 
Independently, Bob also lists its only single-node local path 
with ID 201.  

In the next step, Alice reaches a node in Bob and sends the 
message {(EncA(102)), 3} to Bob. Bob starts a depth-first 
search from AE. It first finds the single-node path AE, 
generates the number 301 as an ID for the distributed path, 
and broadcasts {(EncA(102)), 301}. Now Alice knows that its 
part in the distributed path with ID 301 (ACD-ACDF-AE) is 
its own path with ID 102 (ACD-ACDF). Then Bob adds 
EncB(201) to the subpath ID list. In the next step Bob finds 
the foreign node with record ID 1, and sends {( EncA(102), 
EncB(201) ), 1} to the owner of the node, site Alice. There 
are no more unprocessed adjacent vertices and Alice does not 
enumerate a global path. The rest of the enumeration 
proceeds analogously. 

 
3.7 Empirical Evaluation Methodology. In order to 
empirically demonstrate the validity of the privacy-
enhancing approach, we compared PE-DiHO ARM to the 
non-privacy-enhancing DiHO ARM LHOIM algorithm [21]. 
DiHO ARM by default models second-order links. Textual 
data from four subsets of the 18828 version of the 20 
Newsgroups dataset were used for the evaluation. The 20 
Newsgroups dataset is a popular benchmark for text 
classification algorithms and contains approximately 20,000 
newsgroup documents. The four subsets of the dataset which 
we used in the evaluation are COMP (containing five classes: 
comp.graphics, comp.window.xm comp.sys.mac.harware, 
comp.os.ms-windows.misc, comp.sys.ibm.pc.harware), 
SCIENCE (four classes: sci.crypt, sci.electronics, sci.med, 
sci.space), POLITICS (three classes: talk.politics.mideast, 
talk.politics.guns, talk.politics.misc), and RELIGION (three 
classes: alt.atheism, talk.religion.misc, soc.religion.christian). 
Each subset comprises 2000-3000 documents. Eight random 
samples were taken from each of the four subsets; each 
sample comprised 30% of the subset, except for the samples 
from SCIENCE which were taken at 25% due to its larger 
size. A total of 32 samples were processed using the non-
privacy enhancing DiHO ARM algorithm compared to PE-
DiHO ARM on 3, 8, and 32 nodes.  

The raw textual data was preprocessed and formatted into 
XML documents. Linked records were merged using the two 
algorithms. Both sets of linked records were used as input to 

the CBA algorithm [23]. CBA is a supervised learning 
algorithm based on association rule mining, which considers 
the class of a data instance as a special record item. Using an 
adaptation of the classical Apriori algorithm, CBA generates 
all association rules which contain only the class item in the 
consequent. A heuristic approach is used to build a classifier 
from the association rules in CBA. We used this supervised 
learning approach with labeled data in order to compare PE-
DiHO ARM with non-privacy-enhanced DiHO ARM based 
on error rate. This allows us to explore privacy-enhancing 
approaches that do not necessarily produce the same set of 
itemsets that our baseline algorithm discovers. 

Error measurements for the results obtained from CBA 
were used for a statistical comparison. The standard t-test 
was used to evaluate whether the mean error rate for each of 
the four newsgroup subsets was the same for both 
algorithms, with at least 95% confidence. 

 
4   Experimental Results 
 

The experiments described in section 3.7 were executed 
with the following setup. Each dataset was randomly and 
equally partitioned among the participating sites (3, 8, and 32 
sites were used). For the path enumeration step, two runs 
were made for each dataset: one with parameters MaxL=2, 
MaxSP=1; another with parameters MaxL=1, MaxSP=2. The 
generated paths were then used as input to the CBA 
supervised learning algorithm, with support set to 0.01%, 
confidence set to 100%, and without rule pruning. The 
average error rates and the standard deviation for each of the 
four subsets of the 20 Newsgroups dataset for the non-
privacy-enhancing (Non-PE) algorithm and for each 
configuration of the privacy-enhancing (PE) algorithm are 
summarized in Table 1. The p-value computed using a 
Student’s t-distribution with eight degrees of freedom is also 
shown. 

The t-test p-values in Table 1 clearly show that with high 
confidence the distributions of error rates for PE-DiHO ARM 
and non-privacy-enhancing DiHO ARM are not statistically 
significantly different. Thus we conclude that the models 
built by PE-DiHO ARM are virtually identical to the models 
built by non-privacy-enhanced DiHO ARM.  This provides 
evidence that the underlying input is also identical, and in 
fact in these experiments this is indeed the case. A 
comparison of the actual higher-order itemsets discovered by 
PE-DiHO ARM with those discovered by non-privacy-
enhancing DiHO ARM reveals that the two sets contain 
precisely the same itemsets. Further experiments are needed 
for links of order three and greater, as well as for additional 
datasets such as WebKB and Citeseer. In fact these 
experiments are underway. 

 
 
 

Local graph of Alice 

ACD ACDF 

Local graph of Bob 

3
 

1 

1
 

AE 

2 

1 
1

 
1

 

1
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Table 1. Experimental Results (32 runs total) 
 Non-PE PE  3 

Nodes 
PE 8 

Nodes 
PE  32 
Nodes 

p-value 
(PE vs. 

non-PE) 

COMP 34.6% 
±2.6 

34.6% 
±2.6 

34.6% 
±2.6 

34.6% 
±2.6 

1.00 

POL 18.9% 
±3.2 

19.2% 
±3.6 

18.9% 
±3.2 

18.9% 
±3.2 

0.95 

REL 23.17% 
±1.3 

23.17% 
±1.3 

23.14% 
±1.3 

23.14% 
±1.3 

0.98 

SCI 15.9% 
±0.8 

15.9% 
±0.8 

15.9% 
±0.8 

15.9% 
±0.8 

1.00 

 

 
Figure 5. Non-PE vs. PE on 3, 8 and 32 Nodes 

 
5   Conclusion and Future Work 
 

This article has provided an in-depth analysis of several 
outstanding issues in privacy-enhanced distributed 
association rule mining based on higher-order itemsets. 
Typically both supervised and unsupervised data mining 
algorithms assume that instances are independent and 
identically distributed (IID). In the field of statistical 
relational learning (SRL), however, the IID assumption is not 
made because valuable correlations between instances can be 
leveraged to improve model performance [2].  However, the 
use of SRL requires deeper knowledge of datasets, making 
privacy issues more complex. 

In this article we have presented a privacy-enhancing 
higher-order association rule mining algorithm that operates 
on hybrid fragmented data which is neither vertically nor 
horizontally distributed. We have also addressed the problem 
of privately constructing a graph from a distributed set of 
data instances and we have presented an algorithm which can 
privately enumerate paths in the graph. We demonstrate that 
although our algorithm significantly enhances privacy, it 
maintains the same performance as its non-privacy-
enhancing counterpart. In so doing we address several 
outstanding issues in distributed association rule mining, 
especially when the non-IID assumption is made in SRL.  

In future work we plan to evaluate our approach on 
higher-order links of length three and greater, as well as to 

conduct experiments on additional data from our law 
enforcement partners including sets that have hybrid, 
horizontal and/or vertical fragmentation. We also plan to 
investigate how our algorithms can be made secure against 
malicious adversaries. 

As mentioned above, with our privacy-enhancing 
approach it is not possible in the general case to enumerate 
all paths up to a maximal length. For this reason, we will 
investigate how leveraging a subset of paths affects the 
performance of PE-DiHO ARM. Another problem, which is 
also an open question for the non-privacy-enhancing DiHO 
ARM algorithms, is formulating an optimal support metric 
for higher-order itemsets.  Counting frequent higher-order 
itemsets in a privacy-enhancing way is tied to the definition 
of such a metric. 
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