
Beating Monte Carlo

If you work long enough in any mathematical science, at some point you will
need to estimate an integral that does not have a simple closed form. Maybe
your function is really complicated. Maybe it’s really highly dimensional. Often
you cannot even write it down: it could be a quantity associated with a complex
system, that you can only “query” at certain points by running an experiment.
But you still need your integral, and then you turn to the trustworthy old Monte
Carlo method. (Check this article by Nicholas Metropolis for the history of the
method and what it has to do with Stanislaw Ulam’s uncle’s gambling habbit.)
My goal in this post is to tell you a little bit about how you can do better than
Monte Carlo using discrepancy theory.

1 The Problem and the Monte Carlo Method

Let us fix some notation and look at the simplest possible setting. We have a
function f , that maps the real interval [0, 1] to the reals, and we want to know∫ 1

0

f(x)dx.

We will estimate this integral with the average 1
n

∑n
i=1 f(yi), where y := y1, y2, . . .

is a sequence of numbers in [0, 1]. The error of this estimate is

err(f, y, n) :=

∣∣∣∣∣
∫ 1

0

f(x)dx− 1

n

n∑
i=1

f(yi)

∣∣∣∣∣ .
And here is the main problem I will talk about in this post: How do we choose a
sequence y of points in [0, 1] so that the average 1

n

∑n
i=1 f(yi) approximates the

integral
∫ 1

0
f(x)dx as closely as possible? Intuitively, for larger n the approxi-

mation will be better, but what is the best rate we can achieve? Notice that we
want a single sequence, so that if we want a more accurate approximation, we
just take a few more terms and re-normalize, rather than start everything from
scratch.

The insight of the Monte Carlo method is to take each yi to be a fresh
random sample from [0, 1]. Then for any n, the expectation of 1

n

∑n
i=1 f(yi) is

exactly
∫
f(x)dx (from now on I will skip the limits of my integrals: they will
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all be from 0 to 1). The standard deviation is

1√
n

(∫
f(x)2dx

)1/2

=
‖f‖L2√

n
,

and standard concentration inequalities tell us that, with high probability, err(f, y, n)
will not be much larger than the latter quantity.

2 Quasi-Monte Carlo and Discrepancy

For a fixed function of bounded L2 norm, the Monte Carlo method achieves
err(f, y, n) roughly on the order of n−1/2. In other words, if we want to approx-
imate our integral to within ε, we need to take about ε−2 random samples. It’s
clear that we in general, even for smooth functions, we cannot hope to average
over fewer than ε−1 points, but is ε−2 really the best we can do? It turns out
that for reasonably nice f we can do a lot better using discrepancy.

We define the star discrepancy function of a sequence y := y1, y2, . . . as

δ∗(y, n) := max
0≤t≤1

∣∣∣∣t− |{i : i ≤ n, yi < t}|
n

∣∣∣∣ .
Notice that this is really just a special case of err(f, y, n) where f is the indicator
function of the interval [0, t). A beautiful inequality due to Koksma shows that
in a sense these are the only functions we need to care about:

err(f, y, n) ≤ V (f)δ∗(y, n).

V (f) is the total variation of f , a measure of smoothness, and for continuously
differentiable functions it is equal to

∫
|f ′(x)|dx. The important part is that we

have bounded the integration error by the product of a term that quantifies how
nice f is, and a term that quantifies how “random” the sequence y is. With this,
our task is reduced to finding a sequence y with small star discrepancy, hopefully
smaller than n−1/2. This is the essence of the quasi-Monte Carlo method.

3 The van der Corput Sequence

A simple sequence with low star discrepancy was discovered by van der Corput
in the beginning of the 20th century. Let us write the integer i in binary as
i = ik . . . i0, i.e. i = i020 + i121 + i222 + . . . + ik2k. Then we define r(i) to
be number we get by flipping the binary digits of i around the radix point:
r(i) := i02−1 + i12−2 + . . .+ ik2−k−1, or, in binary, r(i) = 0.i1i2 . . . ik. The van
der Corput sequence is r(0), r(1), r(2), . . ..

I have plotted the first few terms of the van der Corput sequence on the
left in Figure 1: the index i is on the x-axis and the value r(i − 1) on the
y-axis. The terms alternate between [0, 1/2) and [1/2, 1); they also visit each
of [0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1) exactly once before they return, and
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Figure 1: The first eight terms of the van der Corput sequence.

so on. For example, each shaded rectangle on the right in Figure 1 contains
exactly one point (the rectangles are open on the top). The key property of the
van der Corput sequence then is that r(i) ∈ [j2−k, (j + 1)2−k) if and only if
i ≡ j (mod 2k). So for any such dyadic interval, the discrepancy is at most 1/n:
the number of integers i less than n such that i ≡ j (mod 2k) is either bn2−kc
or dn2−ke. We can greedily decompose an interval [0, t) into O(log n) dyadic
intervals plus a leftover interval of length o(1/n); therefore the star discrepancy
of the van der Corput sequence y is O((log n)/n).

Remember that, together with Koksma’s inequality, this means that we
can estimate the integral of any function f with bounded variation with er-
ror err(f, y, n) � (V (f) log n)/n, which, for sufficiently smooth f , is almost
quadratically better than the Monte Carlo method! And with a deterministic
algorithm, to boot.

This was not that hard, so maybe we can achieve the ultimate discrepancy
bound O(1/n)? This is the question (asked by van der Corput) which essen-
tially started discrepancy theory. The first proof that O(1/n) is not achievable
was given by van Aardenne-Ehrenfest. Klaus Roth simplified her bound and
strengthened it to Ω(

√
log n/n) using a brilliant proof based on Haar wavelets.

Schmidt later proved that van der Corput’s O((log n)/n) bound is assymptoti-
cally the best possible.

4 Higher Dimension, Other Measures, and Com-
binatorial Discrepancy

Quasi-Monte Carlo methods are used in real world applications, for example
in quantitative finance, because of the better convergence rates they offer. But
there are many complications that arise in practice. One issue is that we usually
need to estimate integrals of high-dimensional functions, i.e. functions of a large
number of variables. The Koksma inequality generalizes to higher dimensions
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(the generalization is known as the Koksma-Hlawka inequality), but we need to
redefine both discrepancy and total variation for that purpose. The star discrep-
ancy δ∗(y, n) of a sequence y of d-dimensional points measures the worst-case
absolute difference between the d-dimensional volume (Lebesgue measure) of
any anchored box [0, t1)× . . .× [0, td) and the fraction of points in the sequence
y1, . . . , yn that fall in the box. The generalization of total variation is the Hardy-
Krause total variation. Naturally, the best achievable discrepancy increases with
dimension, while the class of functions of bounded total variation becomes more
restrictive. However, we do not even know what is the best achievable star dis-
crepancy for 2 or higher dimensional sequences! We know that no d-dimensional
sequence has discrepancy better than Ω((logd/2+ηd n)/n), where ηd > 0 is some
constant that goes to 0 with d. The van der Corput construction generalizes
to higher dimensions and gives sequences with discrepancy O((logd n)/n) (the
implied constants here and in the lower bounds depend on d). The discrepancy
theory community refers to closing this significant gap as “The Great Open
Problem”.

Another issue in high dimension has to do with asymptotics: for very high
dimension the star discrepancy bounds above are inferior to what we get from
a random sequence unless we take very large n. For this reason, finding se-
quences with discrepancy that behaves like dcn1/2−ε, for constants c and ε > 0
independent of d, might have an even larger impact than solving the great open
problem. On the positive side, I should point out that in practice Quasi Monte
Carlo methods are used for large dimensional estimation: it appears that the
worst case error bound given by the Koksma-Hlawka inequality can be too pes-
simistic.

Everything so far was about integration with respect to the Lebesgue mea-
sure, but in practice we are often interested in a different measure space. We
could absorb the measure into the function to be integrated, but this can af-
fect the total variation badly. We could do a change of variables, but, unless
we have a nice product measure, this will result in a notion of discrepancy in
which the test sets are not boxes anymore. Maybe the most natural solution
is to redefine star discrepancy with respect to the measure we care about. But
how do we find a low-discrepancy sequence with the new definition? It turns
out that combinatorial discrepancy is very helpful here. A classical problem in
combinatorial discrepancy, Tusnády’s problem, asks for is the smallest function
∆d(n) such that any set of n points in Rd can be colored with red and blue
so that in any axis-aligned box [0, t1) × . . . × [0, td) the absolute difference be-
tween the number of red and the number of blue points is at most ∆d(n). A
general transference theorem in discrepancy theory shows that for any prob-
ability measure in Rd there exists a sequence y with star discrepancy at most
O(∆d+1(n)/n). The best bound for ∆d(n) is O(logd+0.5 n), which gives star dis-
crepancy O((logd+1.5 n)/n) for any probability measure, only slightly worse than
the best star discrepancy for Lebesgue measure. This transference result has
long been seen as purely existential, because most non-trivial results in combi-
natorial discrepancy were not constructive, but recently we have seen amazing
progress in algorithms for minimizing combinatorial discrepancy. While even
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with these advances we don’t get sequences that are nearly as explicit as the
van der Corput sequence, there certainly is hope we will get there.

5 Conclusion

I have barely scratched the surface of Quasi Monte Carlo methods and geomet-
ric discrepancy. Koksma-Hlawka type inequalities, discrepancy with respect to
various test sets and measures, combinatorial discrepancy are each a big topic
in itself. The sheer breadth of mathematical tools that bear on discrepancy
questions is impressive: diophantine approximation to construct low discrep-
ancy sequences, reproducing kernels in Hilbert spaces to prove Koksma-Hlawka
inequalities, harmonic analysis to prove discrepancy lower bounds, convex ge-
ometry for upper and lower bounds in combinatorial discrepancy. Luckily, there
are some really nice references available. Matoušek has a very accessible book
on geometric discrepancy. Chazelle focuses on computer science applications.
A new collection of surveys edited by Chen, Srivastav, and Travaglini has many
of the latest developments.
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