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Lecture 3: Constructive Bounds on Discrepancy

Lecturer: Moses Charikar Scribe: Aleksandar Nikolov

In previous lectures we saw a constructive proof of the Lovasz Local Lemma and an
application to a variant of the max-min allocations problem. In this lecture we will con-
tinue the topic of algorithmic versions of existential theorems with a recent result due to
Bansal [Ban10] that makes Spencer’s [Spe85] and Srinavasan’s [Sri97] bounds on discrep-
ancy of set systems constructive. What makes Bansal’s result particularly interesting is
that Spencer’s and Srinavasan’s arguments were previously thought to be non-constructive
in a very strong sense.

3.1 Definitions and Simple Bounds

Consider a set system (V,S), where, without loss of generality, V = [n] = {1, . . . , n} and
S = {S1, . . . , Sm} and ∀j ∈ [m] : Sj ⊆ V . Let also χ : V → {−1,+1} be a coloring of the
vertex set V .

Definition 3.1 (Discrepancy). The discrepancy disc(V,S) of a set system (V,S) is defined
as

min
χ

max
Sj∈S

|χ(Sj)|,

where χ(Sj) :=
∑

i∈Sj
χ(i).

Now we will derive simple probabilistic bounds on disc(V,S). A natural idea for upper-
bounding disc(V,S) is to pick χ uniformly at random, i.e. for every i ∈ V independently set
χ(i) to 1 with probability 1/2 and to −1 with probability 1/2. Then χ(Sj) is a sum of |Sj |
independent ±1 random variables and behaves like a gaussian random variable with mean
0 and standard deviation

√
|Sj |. For large enough Sj and some constant C

Pr
[
|χ(Sj)| ≥ C

√
|Sj | logm

]
≤ 1
m2

.

Since |Sj | ≤ n and small sets for which the above bounds does not hold cannot contribute
much to the discrepancy of the set system, this argument shows disc(V,S) = O(

√
n logm).

Another easy probabilistic argument shows that there exists a (V,S) s.t. disc(V,S) >
λ
√
n for some fixed constant λ. Let S be a set of m = n random subsets of V : for every

j ∈ [n] and every i ∈ [n], i ∈ Sj with probability 1/2 and i 6∈ Sj with probability 1/2. For
a fixed coloring χ, χ(Sj) again is a sum of |Sj | independent random variables and behaves
like a gaussian r.v., and, therefore,

∀j ∈ n : ∃λ s.t Pr
[
|χ(Sj)| ≤ λ

√
n
]
< 1/2

As sets are picked independently,

Pr
[
∀j ∈ n : χ(Sj) ≤ λ

√
n
]
<

1
2n
.
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Taking a union bound over all colorings χ, we get that disc(V,S) ≥ λ
√
n with positive

probability. This proves the existence of a family of set systems with discrepancy Ω(
√
n).

The probabilistic upper bound given above was improved by a celebrated result of
Spencer in 1985. This is the main result that Bansal makes constructive. Some details
follow.

Theorem 3.2 ([Spe85]). For any set system (V,S),

disc(V,S) ≤
√
n log(m/n).

In particular, when m = n, disc(V,S) ≤ 6
√
n.

By the lower bound we proved above, this bound is tight up to constants for m = n.
Bansal shows how to use semidefinite programming to construct a coloring of discrepancy
O(
√
n) for this case.

3.2 Bounded Degree Discrepancy

We say that a set system (V,S) has maximum degree t when for every i ∈ V |{j ∈ m : i ∈
Sj}| ≤ t. In a variation of the discrepancy problem we’re interested in how the discrepancy
of a set system depends on the maximum degree of the system. Ideally, we would like a
bound that is independent of m and n, i.e. a function f : N→ N s.t.

f(t) ≥ sup{disc(V,S) : (V,S) has maximum degree t}

Even the existence of such a function is not obvious. Beck and Fiala proved that
f(t) ≤ 2t− 1 [BF81], and the result was later improved to 2t− 3. This bound is not known
to be sharp and indeed Beck and Fiala conjectured that f(t) = O(

√
t), which is tight by the

lower bound proved in the previous section. Settling the conjecture is an important open
problem in discrepancy theory.

If we allow a dependence on n and m, we have the following two results:

disc(V,S) ≤
√
t log t log n [Bec81]

disc(V,S) ≤
√
t log n [Sri97]

Srinivasan’s bound extends the arguments used in the proof of Spencer’s bound and is also
non-constructive. Bansal gives a constructive version of this bound as well; however, we
will not discuss Srinivasan’s bound further in this lecture.

We will now prove Beck and Fiala’s bound. Interestingly, the proof of the theorem uses
a style of argument used in approximation algorithms for certain network design problems,
e.g. Kamal Jain’s iterative rounding technique. We will use a linear relaxation of discrepancy
and will round it in steps to ±1 values. Consider the following system of equations:

∀j ∈ [m] :
∑
i∈Sj

xi = 0

Each variable appears in at most t equations. Let’s drop all equations with ≤ t variables.
Clearly, the remaining equations are fewer than the variables. Therefore, the system has
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a non-trivial solution, which can be scaled so that there is at least one variable assigned
±1 and all other variables are assigned values in the interval [−1, 1]. Now we can iterate
this procedure. At each phase we will drop all variables set to ±1 in the previous phase -
call these variables fixed and the remaining variables live. Then we will drop all equations
with ≤ t live variables. The same argument we used in phase 1 applies at each phase, and,
therefore, at each phase we fix at least one live variable, so there are at most n phases in
total. At any point equations remaining in the system contribute (fractional) discrepancy
of 0. Equations are dropped from the system if they have at most t live variables. After
an equation is dropped, we have no control over how its remaining live variables are fixed.
However, as each live variable’s range is (−1, 1), the dropped equations can only gain
discrepancy strictly less than 2t. This proves the bound.

3.3 Non-constructive Proof of Spencer’s Bound

At the heart of the proof of Spencer’s theorem is a Partial Coloring Lemma, that is also
central to the constructive version of the bound. Moreover, this is the part of the proof
that uses a pigeonhole-style argument that was previously thought to be strongly non-
constructive.

In the proof of the bound we will construct a low-discrepancy coloring in phases.

Lemma 3.3 (Parial Coloring). In phase i, we can find a partial coloring χi : V → {−1, 0, 1},
such that at least n/2i vertices receive a non-zero color and for any j ∈ [m]

disc(Sj) ≤
√
|Sj |
2i
,

where the discrepancy is taken over the partial coloring χi.

The bound will follow by finding a Partial coloring on all vertices in V in phase 1, and
finding a partial coloring on the vertices which were given a zero color in phase 2, and so
on until all vertices are given a color in {±1}.

First we will describe a high-level sketch of the proof of the lemma. Consider all 2n

colorings χ : V → {±1}. We will put them in buckets where the buckets are defined as
follows: if χ1, χ2 are in the same bucket then

∀j ∈ [m] :
∑
i∈Sj

χ1(i) =
∑
i∈Sj

χ2(i)±∆(Sj). (3.3.1)

Next we will invoke the pigeonhole principle to argue that one of the buckets is large. In
particular, we will pick an absolute constant γ ∈ (0, 1/2), s.t. there exists a bucket with at
least N :=

∑γn
t=0

(
n
t

)
colorings that fall in it. Let’s take a Hamming distance measure on

colorings. By a theorem of Kleitman, the minimum diameter set of size N is the hamming
ball of that size, and, therefore, any set of size N has diameter at least 2γn. Therefore,
we are guaranteed to find two colorings in a bucket of size N that disagree in the colors of
a constant fraction of V . Let those colorings be χ1 and χ2. We define a partial coloring
χ = (χ1−χ2)/2. By (3.3.1) χ has discrepancy at most ∆(Sj) for any set Sj ∈ S and assigns
a non-zero color to a constant fraction of V .
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Figure 1: Bucket labels

Now some details. For every Sj ∈ S we will pick a granularity parameter bj = ∆(Sj) =
λj
√
|Sj |. We define the rounding function Rb(x) to be the nearest integer to x/2b (see

Figure 1). With a coloring χ we associate a vector (χ(S1), . . . , χ(Sm)). We round the
vector to (Rb1(χ(S1)), . . . , Rbm(χ(Sm))), and this last rounded vector is the bucket label for
χ.

We need a way to argue that one of the buckets is big. Unfortunately, the number of
buckets is too large for a straightforward counting argument to work. Instead we need to
exploit the fact that for a random χ each χ(Sj) is concentrated around its mean 0. The
argument we’re going to use is one of the really neat ideas of Spencer’s proof and is also
the step that is particularly difficult to implement efficiently. Let’s pick χ at random. Then
the bucket label of χ, Y := (Rb1(χ(S1)), . . . , Rbm(χ(Sm))), is a random variable. We are
going to show that for some ε, H(Y ) ≤ εn, where H(·) is the entropy function. Therefore,
Pr [Y = y] ≥ 2−εn for some bucket label y, i.e. there are at least 2(1−ε)n colorings with label
y.

The main technical part of the proof is bounding the entropy of Y = (Y1, . . . , Ym). We
use the following basic inequality:

H(Y ) ≤
m∑
j=1

H(Yj).

It is enough to analyze the entropy of Yj . Remember that Yj behaves like a gaussian random
variable that is discretized into intervals of size 2∆(Sj) = 2λj

√
|Sj |. When λ := λj is large,

the entropy is dominated by the central intervals: −1, 0, and 1, and most of the probability
mass falls in the 0 interval. On the other hand, if λ is small, the high probability mass region
is divided into many small intervals and Yj behaves much like a uniform random variable
in the interval [−1, 1]. More precisely, the following bounds are true for some constant k:

H(Yj) ≤

{
ke−λ

2
j/9, λj > 0.1

k log( 1
λj

), λj ≤ 0.1
(3.3.2)

While only the first inequality is needed for the non-constructive argument (we will be
free to set the λj constants as big as necessary), the constructive version needs the second
inequality as well.

In the non-constructive proof we will set all λj to a single value λ (once again the extra
degree of freedom in setting different λj for different j will be needed in the constrictive
version). In order to have a bucket large enough so that two colorings in the bucket agree on
the colors of at most half the vertices in V , we need the following inequality to be satisfied:

H(Y ) ≤
m∑
j=1

H(Yj) ≤
m∑
j=1

ke−λ
2
j/2 ≤ n

5
.
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This will be true if we set λ = c
√

log m
n for an appropriate constant c. This completes the

proof of the partial coloring lemma.
Finally, we need to put together the pieces of the argument. We will apply the partial

coloring lemma in phases, so that in each phase we will find a partial coloring of the vertices
which have not been colored so far. Let ni be the number of vertices which are not colored
before phase i. We have ni = n and ni ≤ n2−i+1. After log n+ 1 steps at most one vertex
is left uncolored, and, therefore, the total discrepancy when the whole set V is colored is at
most

logn+1∑
i=1

c

√
ni log

m

ni
+ 1 = c

logn+1∑
i=1

√
ni

(
i+ log

m

ni

)
+ 1

≤ O
(√

n log
m

n

)
.

3.4 Approximating Hereditary Discrepancy

We will begin our discussion of efficient constructions of low-discrepancy colorings with
a pseudoapproximation algorithm for discrepancy by Bansal. This result is simpler than
the constructive version of Spencer’s and Srinivasan’s bounds. In fact, those constructive
bounds build on the ideas used in the pseudoapproximation algorithm. In the next section
we will sketch how the constructive version of Spencer’s bound can be derived from the
algorithm we are going to describe next.

First we need some definitions. Given a set system (V,S), we define the trace of S on
W ⊆ V as

S|W = {Sj ∩W : Sj ∈ S}

Then, the hereditary discrepancy of (V,S) is

herdisc(V,S) = max
W⊆V

disc(W,S|W ).

Hereditary discrepancy is in some sense a more robust notion of the discrepancy of a set
system. It is easy to sea that herdisc(V,S) is always positive (take W to be a singleton set).
Also, there are easy examples of set systems with discrepancy 0 and hereditary discrepancy
Ω(
√
n) (see [Mat99]).

We will show the following.

Theorem 3.4 ([Ban10]). There exists a polynomial time randomized algorithm that given a
set system (V,S) with herdisc(V,S) = λ, finds a coloring χ : V → {−1, 1} with discrepancy
O(λ(

√
logm log n) with probability at least 1/n.

Without loss of generality we can assume we know λ since there are at most n choices
for its value.. We begin with a natural SDP relaxation of discrepancy.

‖
∑
i∈Sj

vi‖22 ≤ λ2 ∀j ∈ [m] (3.4.1)

‖vi‖22 = 1 ∀i ∈ [n] (3.4.2)
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The feasibility of the SDP is guaranteed by herdisc(V,S) = λ (in fact disc(V,S) = λ is
enough, but we will need the hereditary discrepancy later). Next we need to round the
SDP to an integer solution. However, we also want to exploit the guarantees given by
inequalities 3.4.1. Let’s for a moment assume that all we need is to assign each vertex a
color from R so that discrepancy is small. Bansal’s idea is to achieve this by picking a
random vector r from a multinomial gaussian distribution and projecting the vectors vi
down onto r; the real values we get are distributed according to a gaussian distribution,
as is the discrepancy of each set Sj . Moreover, the variance of the discrepancy of Sj is
bounded by λ by inequalities 3.4.1. Details follow.

We are going to get an integer solution incrementally. At each time step t we will
maintain a vector x(t) ∈ [−1, 1]n. Initially, x(0) = (0, . . . , 0). At time t we will generate
generate a vector r(t) from N(0, 1)n, where N(·, ·) is the gaussian distribution; then we
update x based on a random projection: x(t)

i = x(t−1) + s(vi · r(t)), where s is a very small
scaling factor (s = O(1/(n

√
log n))). This update process has two important properties:

• At each step we make progress:

E[(x(t)
i )2] = E[(x(t−1)

i )]2 + s2. (3.4.3)

The middle term has expectation 0, as the random variables x(t−1)
i and vi · r(t) are

independent with mean 0.

• Discrepancy is kept small for every Sj ∈ S:

∑
i∈Sj

x
(t)
i −

∑
i∈Sj

x
(t−1)
i = s

∑
i∈Sj

vi

 · r(t). (3.4.4)

Recall that when r ∈ N(0, 1)n, vi · r is a gaussian with with variance ‖vi‖22. Therefore
the right hand side of (3.4.4) is a gaussian with variance s2‖

∑
i∈Sj

vi‖22 which by
(3.4.1) is at most s2λ2.

By the first property, at each time step the values xi will move slightly away from 0. Once
a variable is in the region [−1,−(1 − 1/n)] it is fixed to -1 and is not updated anymore;
likewise, once a variable is in the region [1 − 1/n, 1], it is fixed to 1 and is not updated
anymore. Since the scaling factor s is very small, with very high probability no variable will
become larger than 1 or smaller than -1 before it is fixed. Note that when fixing a variable,
we can gain discrepancy of value at most 1/n, which is at most 1 over all iterations and is
negligible, considering that the hereditary discrepancy is at least 1.

Ideally, we would be able to continue the update process with the remaining variables
once a variable is fixed. However, the constraints (3.4.1) can bound the variance of the
updates only when all vectors are used in the update process. Therefore, we need to re-
solve the SDP. In particular, let A(t) = {i : i is active at time t}. The new SDP contains
constraints (3.4.1) and also

‖vi‖ = 1 ∀i ∈ A(t)
‖vi‖ = 0 ∀i ∈ [n] \A(t)
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The feasibility of the solution is guaranteed by herdisc(V,S) = λ (and this is where we
really need the hereditary discrepancy). Note that while the SDP is re-solved, the values of
xi are not reset. After re-solving the SDP the update process continues with the new SDP
solution. The process stops when all xi have been fixed.

For the analysis we will introduce the notion of phases, similar to the phases in the proof
of Spencer’s bound. We say that the algorithm is in phase q when |A(t)| ∈ (n/2q, n/2q−1].
Let Eq be the event that in phase q no set gains in discrepancy more than cλ

√
logm. We

need to prove that for any q

Pr [Eq|E1 ∧ . . . ∧ Eq−1] ≥ 1/2. (3.4.5)

Then by the chain rule we would know that Pr [∀iEi] ≥ 1/n, and, therefore, the total

discrepancy of the final solution is O(λ
√

logm log n) with probability at least 1/n.
We already have the ingredients we need to prove (3.4.5). By the progress property of

the update process and Markov’s inequality, the number of update steps in the q-th phase
is at most O(1/s2) with constant probability. Therefore, in each phase to the discrepancy
of a set we add the sum of O(1/s2) gaussian random variables with variances bounded by
s2λ2, which is a gaussian random variable with variance at most λ2. It follows that with
probability 1− 1

mO(1) the discrepancy of any set Sj increases by at most O(λ
√

logm), and,
taking a union bound over all Sj ∈ S, with constant probability the discrepancy of no
set increases by more than this amount. Choosing the right constants yields (3.4.5). This
completes the analysis of the algorithm.

3.5 Constructive Version of Spencer’s Bound

In order to make Spencer’s bound constructive we need to efficiently find the partial coloring
whose existence is guaranteed by the partial coloring lemma. We will use a similar SDP
formulation as the one for approximating hereditary discrepancy and an analogous rounding
technique. However, in Spencer’s bound, we need a tighter control on how the discrepancies
of the sets Sj increase. Therefore, when the discrepancy of a set increases too much, we
will use smaller buckets for that set. This will reduce discrepancy, but increase the entropy
of the bucket labels. The technical challenge is to show that not too many sets will need to
be bucketed aggressively, and, therefore, the partial coloring lemma still holds.

In phase q, we will call a set k-dangerous if its discrepancy from the current phase is in
the interval [βq(k), βq(k + 1)), where

βq(k) := O(
√
n/2q(q + 1)(2− 1

k
)

In the SDP for the phase, we set ‖vi‖22 = 0 for i colored in previous phases, and ‖vi‖22 ≤ 1
for active variables, as we are now looking for a partial coloring. In order to ensure progress
through the phase, we set: ∑

i∈[n]

‖vi‖22 ≥ n/2q+2.

Finally, define

αq(k) := O(
n(q + 1)

(k + 1)52q
.
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In the SDP, we will insist that the discrepancy of a k-dangerous set is bounded by √αq.
For the full details, look at Bansal’s paper.
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