
714 Chapter 13 Randomized Mgofithms

really identifying the asymptotically "correct" value of t despite our use of the
seemingly weak Union Bound.

13.2 Finding the Global Minimum Cut
Randomization naturally suggested itself in the previous example, since we
were assuming a model with many processes that could not directly commu-
nicate. We now look at a problem on graphs for which a randomized approach
comes as somewhat more of a surprise, since it is a problem for which perfectly
reasonable deterministic algorithms exist as well.

~ The Problem
Given an undirected graph G = (V, E), we define a cut of G to be a partition
of V into two non-empty sets A and B. Earlier, when we looked at network
flows, we worked with the closely related definition of an s-t cut: there, given
a directed graph G = (V, E) with distinguished source and sink nodes s and t,
an s-t cut was defined to be a partition of V into sets A and B such that s ~ A
and t ~ B. Our definition now is slightly different, since the underlying graph
is now undirected and there is no source or sink.

For a cut (A, B) in an undirected graph G, the size of (A, B) is the number of
edges with one end in A and the other in B. A global minimum cut (or "global
rain-cut" for short) is a cut of minimum size. The term global here is meant
to connote that any cut of the graph is allowed; there is no source or sink.
Thus the global rain-cut is a natural "robustness" parameter; it is the smallest
number of edges whose deletion disconnects the graph. We first check that
network flow techniques are indeed sufficient to find a global rain-cut.

(13.4) There is a polynomial-time algorithm to find a global rain-cut in an
undirected graph G.

Proof. We start from the similarity between cuts in undirected graphs and s-t
cuts in directed graphs, and with the fact that we know how to find the latter
optimally.

So given an undirected graph G = (V, E), we need to transform it so that
there are directed edges and there is a source and sink. We first replace every
undirected edge e = (u, v) ~ E with two oppositely oriented directed edges,
e’= (u, u) and e"= (v, u), each of capacity 1. Let G’ denote the resulting
directed graph.

Now suppose we pick two arbitrary nodes s, t ~ V, and find the minimum
s-t cut in G’. It is easy to check that if (A, B) is this minimum cut in G’, then
(A, B) is also a cut of minimum size in G among all those that separate s from
t. But we know that the global rain-cut in G must separate s from something,

13.2 Finding the Global Minimum Cut

since both sides A and B are nonempty, and s belongs to only one of them.
So we fix any s ~ V and compute the minimum s-t cut in G’ for every other
node t ~ V-{s}. This is n - 1 directed minimum-cut computations, and the
best among these will be a global rain-cut of G. []

The algorithm in (13.4) gives the strong impression that finding a global
rain-cut in an undirected graph is in some sense a harder problem than finding
a minimum s-t cut in a flow network, as we had to invoke a subroutine for the
latter problem n -’1 times in our method for solving the former. But it turns out
that this is just an illusion. A sequence of increasingly simple algorithms in the
late 1980s and early 1990s showed that global rain-cuts in undirected graphs
could actually be computed just as efficiently as s-t cuts or even more so, and by
techniques that didn’t require augmenting paths or even ~ notion of flow. The
high point of this line of work came with David Karger’s discovery in 1992 of
the Contraction Algorithm, a randomized method that is qualitatively simpler
than all previous algorithms for global rain-cuts. Indeed, it is sufficiently simple
that, on a first impression, it is very hard to believe that it actually works.

~ Designing the Algorithm
Here we describe the Contraction Algorithm in its simplest form. This version,
while it runs in polynomial time, is not among the most efficient algorithms
for global rain-cuts. However, subsequent optimizations to the algorithm have
given it a much better running time.

The Contraction Algorithm works with a connected multigraph G = (V, E);
this is an undirected graph that is allowed to have multiple "parallel" edges
between the same pair of nodes. It begins by choosing an edge e = (u, v) of G
uniformly at random and contracting it, as shown in Figure 13.1. This means
we produce a new graph G’ in which u and v have been identified into a single
new node w; all other nodes keep their identity. Edges that had one end equal
to u and the other equal to v are deleted from G’. Each other edge e is preserved
in G’, but if one of its ends was equal to u or v, then this end is updated to be
equal to the new node w. Note that, even if G had at most one edge between
any two nodes, G’ may end up with parallel edges.

The Contraction Algorithm then continues recursively on G’, choosing
an edge uniformly at random and contracting it. As these recursive calls
proceed, the constituent vertices of G’ should be viewed as supernodes: Each
supernode w corresponds to the subset S(w) g. V that has been "swallowed
up" in the contractions that produced w. The algorithm terminates when
it reaches a graph G’ that has only two supernodes v1 and u2 (presumably
with a number of parallel edges between them). Each of these super-nodes ui
has a corresponding subset S(ui) c_ V consisting of the nodes that have been

715



716 Chapter 13 Randomized Algorithms

Figure 13.1 The Contraction Algorithm applied to a four-node input graph.

contracted into it, and these two sets S(Vl) and S(v2) form a partition of V. We
output (S(Vl), S(v2)) as the cut found by the algorithm.

The Contraction Algorithm applied to a multigraph G = (V, E):

For each node u, we will record

the set S(u) of nodes that have been contracted into

Initially S(u) = {~} for each u

If G has two nodes uI ~nd v2, then return the cut (S(ul), S(u2))

Else choose an edge e = (u,u) of G uniformly at random
Let G’ be the graph resulting from the contraction of e~

with a new node ray replacing u and u

Define S(zuv) = S(u) U S(u)
Apply the Contraction Algorithm recursively to G’

Endif

/,~ Analyzing the Algorithm
The algorithm is making random choices, so there is some probabil!ty that it
will succeed in finding a global min-cut and some probability that it won’t. One
might imagine at first that the probability of success is exponentially small.
After all, there are exponentially many possible cuts of G; what’s favoring the
minimum cut in the process? But we’ll show first that, in fact, the success
probability is only polynomially small. It will then follow that by running the
algorithm a polynomial number of times and returning the best cut found in
any run, we can actually produce a global rain-cut with high probability.

(13.5) The Contraction Algorithm returns a global rain-cut of G with proba-
1 nbility at least /(2).

Proof. We focus on a global rain-cut (A, B) of G and suppose it has size k;
in other words, there is a set F of k edges with one end in A and the other

13.2 Finding the Global Minimum Cut

in B. We want to give a lower bound on the probability that the Contraction
Algorithm returns the cut (A, B).

Consider what could go wrong in the first step of the Contraction Algo-
rithm: The problem would be if an edge in F were contracted. For then, a node
of A and a node of B would get thrown together in the same supernode, and
(A, B) could not be returned as the output of the algorithm. Conversely, if an
edge not in F is contracted, then there is still a chance that (A, B) could be

~

So what we want is an upper bound on the probability that an edge in F is
contracted, and for this we need a lower bound on the size of E. Notice that if
any node v had degree less than k, then the cut ({v}, V- {v}) would have size
less than k, contradicting our assumption that (A, B) is a global rain-cut. Thus
every node in G has degree at least k, and so IEI > ½kn. Hence the probability
that an edge in F is contracted is at most

k 2
½kn - n"

Now consider the situation after j iterations, when there are rt -j super-
nodes in the current graph G’, and suppose that no edge in F has been
contracted yet. Every cut of G’ is a cut of G, and so there are at least k edges
incident to every supernode of G’. Thus G’ has at least ½k(n- j) edges, and
so the probability that an edge of F is contracted in the next iteration j ÷ 1 is
at most

2
½k(n -j) n -j"

The cut (A, B) will actually be returned by the algorithm if no edge
n- 2. If we write E] for

the event that an edge of F is not contracted in iteration j, then we have
shown Pr [El] > 1 - 2/n and Pr [Ej+1 I E1 A E2---~ Ej] _> 1 - 2/(n -j). We are
interested in lower-bounding the quantity Pr [El C~ E2"-. Cl En_2], and we
can check by unwinding the formula for conditional probability that this is
equal to

717



718 Chapter 13 Randomized Algorithms

So we now know that a single run of the Contraction Algorithm fails to
find a global rain-cut with probability at most (1 - 1/(~)). This number is very
close to 1, of course, but we can amplify our probability of success simply
by repeatedly running the algorithm, with independent random choices, and
taking the best cut we find. By fact (13.1), if we run the algorithm (~) times,
then the probability that we fail to find a global rain-cut in any run is at most

And it’s easy to drive the failure probability below 1/e with further repetitions:
If we run the algorithm (~) In n times, then the probability we fail to find a
global min-cut is at most e- in n = 1/n.

The overall running time required to get a high probability of success is
polynomial in n, since each run of the Contraction Algorithm takes polynomial
time, and we run it a polynomial number of times. Its running time will be
fairly large compared with the best network flow techniques, since we perfdrm
® (n2) independent runs and each takes at least f2 (m) time. We have chosen to
describe this version of the Contraction Algorithm since it is the simplest and
most elegant; it has been shown that some clever optimizations to the way in
which multiple runs are performed can improve the running time considerably.

Further Analysis: The Number of Global Minimum Cuts
The analysis of the Contraction Algorithm provides a surprisingly simple
answer to the following question: Given an undirected graph G = (V, E) on
n nodes, what is the maximum number of global min-cuts it can have (as a
function of n)?

For a directed flow network, it’s easy to see that the number of minimum
s-t cuts can be exponential in n. For example, consider a directed graph with

vn, and unit-capacity edges (s, vi) and (vi, t) for each i.
vn} will constitute the source

side of a minimum cut, and so there are 2n minimum s-t cuts.
But for global min-cuts in an undirected graph, the situation looks quite

different. If one spends some time trying out examples, one finds that the n-
node cycle has (~) global rain-cuts (obtained by cutting any two edges), and
it is not clear how to construct an undirected graph with more.

We now show how the analysis of the Contraction Algorithm settles this
question immediately, establishing that the n-node cycle is indeed an extreme
case.

13.3 Random Variables and Their Expectations

(13.6) An undirected graph G = (V, E) on n nodes has at most (~) global
mm-cu~s.

Proof. The key is that the proof of (13.5) actually established more than was
Cr denote all its global min-cuts.

Let ~i denote the event that Q is returned by the C)ntraction Algorithm, and
let £ = U~=1£i denote the event that the algorithm returns any g!obal rain-cut.

Then, although (13.5) simply asserts that Pr [£] > 1/(~), its proof actually
shows that for each i, we have Pr [Ei] > 1/(~). Now each pair of events £i
and £i are disjoint--since only one cut is returned by any given run of the
algorithm--so by the Union Bound for disjoint events (13.49), we have

r

i=l

But clearly Pr [a] < 1. and so we must have r < (~). []

13.3 Random Variables and Their Expectations
Thus far our analysis of randomized algorithms and processes has been based
on identifying certain "bad events" and bounding their probabilities. This is
a qua~tative type of analysis, in the sense that the algorithm either succeeds
or it doesn’t. A more quantitative style of analysis would consider certain
parameters associated with the behavior of the algorithm--for example, its
running time, or the quality of the solution it produces--and seek to determine
the expected size of these parameters over the random choices made by the
algorithm. In order to make such analysis possible, we need the fundamental
notion of a random uariable.

Given a probability space, a random variable X is a function from the
underlying sample space to the natural numbers, such that for each natural
number j, the set X-I(j) of all sample points taking the value j is an event.
Thus we can write Pr [X =j] as loose shorthand for Pr [X-~(j)]; it is because
we can ask about X’s probability of taking a given value that we think of it as
a "random variable."

Given a random variable X, we are often interested in determining its
expectation--the "average value" assumed by X. We define this as

E [X] = E j" Pr [X = j],
]=o

719


