
CSC473: Advanced Algorithm Design Winter 2018

Tutorial 2: Randomized Triangle Finding in Graphs

Aleksandar Nikolov

Let us assume that we are given an undirected graph G = (V,E) where |V | = n and |E| = m. We
define a triangle in a graph as any triple of vertices {u, v, w} so that there is an edge between any
two of them in G. The first problem that we consider is as follows:

Problem 1. Given a graph G = (V,E), find if G has a triangle.

If G is given as an adjacency list, we can solve problem 1 in Θ(mn) using the following trivial
approach.

for every e = (u, v) ∈ E
Check if the adjacency lists of u and v have a common element w.
If such a w exists, output {u, v, w}.

Output “No triangle Found”

Checking if the adjacency lists of u and v have a common element can be done in time O(n) using
a hash table or even a direct access table. For a dense graph, this algorithm runs in time Ω(n3).
The goal of this lecture is to design a faster algorithm on dense graphs.

Let A be the adjacency matrix of G, i.e., aij = 1 ⇐⇒ (i, j) ∈ E. Now, let us observe the entries of
the B = A2 matrix: bij =

∑
k∈[n] aikakj = # of common neighbors of i and j. Therefore, bij > 0 if

and only if there is a path of length exactly two between i and j. So when is there a triangle which
contains the vertices i and j? Exactly, when there is an edge between i and j, and also a length
two path between i and j through some other vertex k. This gives a new algorithm for Problem 1.

Compute B = A2

for i = 1 to n
for j = 1 to n

if bij > 0 and aij > 0
Output “Triangle Found”

In order to analyze the running time of this algorithm, firstly, we need to know the running time
of the matrix multiplication. You may have seen a landmark divide and conquer algorithm by
Strassen, which computes the product of two n × n matrices in time O(nlog2 7). (log2 7 is about
2.807 < 3). The current best algorithms have running time about O(n2.373). The best constant
in the exponent is usually called ω, and determining this constant is one of the most important
open problems in computer science. Therefore, the running time of the previous algorithm is
O(nω + n2) = O(nω).

Notice that this algorithm can be slightly modified to solve the following problem in the same
running time:

Problem 2. For all pairs i, j of vertices of G, determine if there is a third vertex k such that
{i, j, k} forms a triangle.

1

However, notice one strange thing about our algorithm: while it can determine if there is a triangle
containing i and j, it does not tell us which is the third vertex k. More formally, this problem can
be stated as follows:

Problem 3. For all pairs i, j of vertices of G, find a third vertex k such that {i, j, k} forms a
triangle.

We could easily solve Problem 3, if we solve the Boolean Product Witness Matrix (BPWM) problem.

Definition 1. Boolean Product Witness Matrix (BPWM) problem. Given two boolean
matrices A and B, compute a matrix W such that wij = k, where aik = bkj = 1, if such a k exists
(this k is called a witness for i and j) or wij = 0 otherwise.

Exercise 1. Show that if you have a T (n) worst-case time algorithm for the BPWM problem, you
can solve Problem 3 in time T (n) + O(n2).

We give a randomized (Las Vegas) algorithm which solves BPWM in expected time O(nω log2 n).

Initialize W = 0
Compute C = AB

for p = 20, 2−1, 2−2, . . . , 2−dlog2 ne

for attempt = 1 to dT log2 ne
Define a vector x ∈ {0, 1}n so that xj = 1 independently with probability p,
and 0 with probablity 1− p.
Define the matrix D by dij = aijxjj
Compute the product E = DB
for all i, j in [n]

if eij is a witness for i and j
Set wij = eij

if for any i, j, cij > 0 = wij

Compute a witness for i and j in time O(n)

The parameter T is a large constant that we define later. It is clear the algorithm is correct, because
it every entry of W is checked for being a witness. We need to analyze its expected running time.
The important thing is to show that the expected number of missing witnesses after the loop
executes is very small.

The idea of the algorithm is the following. Fix some i and j. Suppose the i-th row Di,∗ of D has
exactly one entry k for which bkj > 0 and dik > 0. Then eij = (DB)ij = dikbkj = k, and we have
our witness. Let us say that the pair {i, j} is successful if this happens for at least one iteration of
the for loop and at least one iteration of the inner loop.

We analyze the probability that {i, j} is successful. Let S be the set of indices for which aik =
bkj = 1 (the set of witnesses for i and j). For {i, j} to be successful, we need that xk = 1 for
exactly one element of S.

Consider the iteration of the outer for loop in which 1
2|S| ≤ p ≤ 1

|S| . (Verify that such an iteration

surely exists.) The probability that xk = 1 for exactly one element of S is:

2

∑
k∈S

P(xk = 1 and x` = 0 for all other ` in S) = |S|p(1− p)|S|−1

≥ |S|p(1− 1

|S|
)|S|−1

≥ |S|pe−1

≥ 1

2
e−1 =

1

2e
,

where we used (1− 1
z)z−1 > e−1 for all z > 1. The probability that this happens at least once over

the T log n iterations of the inner loop is at least

1−
(

1− 1

2e

)T logn

> 1− 1

n3

for a large enough constant T . Therefore, the probability that {i, j} is successful is at least 1− 1
n3 .

Now we can finish the running time analysis. The first line takes O(nω) time. The loops run a total
of O(log2 n) times, and for each run we do O(nω) work. So the two loops take a total of O(nω log2 n)
time. The final if statement takes expected time O(n) ∗ E[# of unsuccessful pairs {i, j}]. Because
each pair is successful with probability at least 1− (1

n)3, the expected number of unsuccessful pairs
is at most n2 · n−3 ≤ 1/n. Therefore, the expected running time of the final if statement is O(1).

Exercise 2. Show that for integer m and n, the product AB of an n ×m matrix A and a m × n
matrix B can be computed in time O(nmω−2), where m ≤ n. Use this to improve the running time
of the algorithm for BPWM to O(nω log n), assuming ω > 2.

3

