
CHAPTER 3

Moments and Deviations

IN Chapters 1 and 2, we bounded the expected running times of several ran-
domized algorithms. While the expectation of a random variable (such as a
running time) may be small, it may frequently assume values that are far higher.
In analyzing the performance of a randomized algorithm, we often like to show
that the behavior of the algorithm is good almost all the time. For example, it is
more desirable to show that the running time is small with high probability, not
just that it has a small expectation. In this chapter we will begin the study of
general methods for proving statements of this type. We will begin by examining
a family of stochastic processes that is fundamental to the analysis of many
randomized algorithms: these are called occupancy problems. This motivates
the study (in this chapter and the next) of general bounds on the probability
that a random variable deviates far from its expectation, enabling us to avoid
such custom-made analyses. The probability that a random variable deviates
by a given amount from its expectation is referred to as a tail probability for
that deviation. Readers wishing to review basic material on probability and
distributions may consult Appendix C.

3.1. Occupancy Problems

We begin with an example of an occupancy problem. In such problems we
envision each of m indistinguishable objects ("balls") being randomly assigned
to one of n distinct classes ("bins"). In other words, each ball is placed in
a bin chosen independently and uniformly at random. We are interested in
questions such as: what is the maximum number of balls in any bin? what is the
expected number of bins with k balls in them? Such problems are at the core
of the analyses of many randomized algorithms ranging from data structures
to routing in parallel computers. Later, in Section 3.6, we will encounter a
variant of the occupancy problem, known as the coupon collector's problem; in
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MOMENTS AND DEVIATIONS

Chapter 4, we will apply sophisticated techniques to various random variables
arising in occupancy problems.

Our discussion of the occupancy problem will illustrate a recurrent tool in the
analysis of randomized algorithms: that the probability of the union of events is
no more than the sum of their probabilities. This is a special case of the Boole-
Bonferroni Inequalities (Proposition C.2) and can be formally stated as follows:
for arbitrary events £\, £2? ••-, £w> not necessarily independent,

This principle is extremely useful because it assumes nothing about the de-
pendencies between the events. Thus, it enables us to analyze phenomena
involving events with very complicated interactions, without having to unravel
the interactions.

Consider first the case m = n. For 1 < i < n, let Xt be the number of balls
in the ith bin. Following Example 1.1, we have E[X,] = 1 for all i. Yet we do
not expect that during a typical experiment every bin receives exactly one ball.
Rather, we expect some bins to have no balls at all, and others to have many
more than one.

Let us try now to make a statement of the form "with very high probability,
no bin receives more than k balls," for a suitably chosen k. Let £;(/c) denote the
event that bin j has k or more balls in it. We concentrate on analyzing £\(k).
The probability that bin 1 receives exactly I balls is

The second inequality results from an upper bound for binomial coefficients
(Proposition B.2). Thus,

i—k

Let k* = f(3Inn)/InIn«1. Then,

The same computation tells us that this upper bound applies to Pr[£i(fc*)] for
all 1, but can we say that no bin is likely to have more than k* balls in it? For
this we invoke the principle mentioned at the beginning of this section: the
probability of the union of the events £,(fc*) is no more than their sum. We
obtain that
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3.2 THE MARKOV AND CHEBYSHEV INEQUALITIES

Thus we have established:

Theorem 3.1: With probability at least I — l/n, no bin has more than k* —
(3 In n)l In In n balls in it.

Interestingly, when m is of the order of n log n, the bin with the most balls has
about the same number of balls as the expected number of balls in any bin. This
phenomenon is exploited in a number of randomized algorithms (see, for instance,
Section 4.2).

Exercise 3.1: For m= n log n, show that with probability 1 - o(1) every bin contains
O(log n) balls.

We turn to a classic combinatorial problem. Suppose that m balls are randomly
assigned to n bins. We study the probability of the event that they all land in distinct
bins. The special case n = 365 is popular in mathematical lore as the birthday
problem. The interpretation is that the 365 days of the year correspond to 365 bins,
and the birthday of each of m people is chosen independently and uniformly from
all 365 days (ignoring leap years). How large must m be before two people in the
group are likely to share their birthdays?

Consider the assignment of the balls to the bins as a sequential process: we throw
the first ball into a random bin, then the second ball, and so on. For 2 < / < m, let
Si denote the event that the /th ball lands in a bin not containing any of the first
i — 1 balls. We will bound Pr[H?L2£;] from above. From (1.6), we can write

Pr[nJL2£] = Pr[£2]Pr[£3 I &]Pr[£4 I S2 n £3] • • • ¥r[£m | n ^ f , - ] .

Now, it is easy to compute Pr[£; | nlr}2£jV- this is simply the probability that the
ith ball lands in an empty bin given that the first / — 1 all fell into distinct bins, and
is thus 1 — (/ — l)/n. Making use of the fact that 1 — x < e~x, we have

m / • 1 \ m

(-2 ' — 1 1 1 „ I — I I
i=2 V U ' i=2

Thus, we see that for m equal to \*Jln + 1], the probability that all m balls land in
distinct bins is at most \ /e\ as m increases beyond this value, the probability drops
rapidly.

3.2. The Markov and Chebyshev Inequalities

We have seen above that making statements about the probability that a random
variable deviates far from its expectation may involve a detailed, problem-specific
analysis. Often, one can avoid such detailed analyses by resorting to general in-
equalities on such tail probabilities.
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MOMENTS AND DEVIATIONS

We begin with the Markov inequality, a fundamental tool we will invoke
repeatedly when we develop more sophisticated bounding techniques. Let X
be a discrete random variable and f(x) be any real-valued function. Then the
expectation of f(X) is given by (see Appendix C)

Theorem 3.2 (Markov Inequality): Let Y be a random variable assuming only
non-negative values. Then for all t E R+,

Pr[7 > t] <

Equivalently,

Pr[7 > kE[Y]] < i

PROOF: Define a function f(y) by f{y) = 1 if y > t, and 0 otherwise. Then
Pr[Y > t] = Etf(Y)}. Since f(y) < y/t for all y,

and the theorem follows. D

This is the tightest possible bound when we know only that Y is non-negative
and has a given expectation. Unfortunately, the Markov inequality by itself
is often too weak to yield useful results. The following exercise may help the
reader appreciate this; it shows that the Markov inequality is tight only for
rather uninteresting distributions.

Exercise 3.2: Given a positive integer k, describe a random variable X assuming
only non-negative values, such that

Pr[X > kE[X]] = -.
K

The following generalization of Markov's inequality underlies its usefulness
in deriving stronger bounds.

Exercise 3.3: Let Y be any random variable and h any non-negative real function.
Show that for all t eR + ,
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3.3 RANDOMIZED SELECTION

We now show that the Markov inequality can be used to derive better bounds
on the tail probability by using more information about the distribution of the
random variable. The first of these is the Chebyshev bound, which is based
on the knowledge of the variance of the distribution; we will apply this to the
analysis of a simple randomized selection algorithm.

For a random variable X with expectation \ix, its variance a\ is defined to
be E[(X — fix)2]- The standard deviation of X, denoted ax, is the positive square
root of a\. (See Appendix C.)

Theorem 3.3 (Chebyshev's Inequality): Let X be a random variable with expec-
tation \ix and standard deviation ax- Then for any t G R4",

PT[\X - fiX\ > tax] < ^.

PROOF: First, note that

Fr[\X - fix\ > tax] = Pr[(* " to)2 > t2a2
x].

The random variable Y — (X — pix)2 has expectation ax, and applying the
Markov inequality to Y bounds this probability from above by 1/t2. D

3.3. Randomized Selection

We now consider the use of random sampling for the problem of selecting the
fcth smallest element in a set S of n elements drawn from a totally ordered
universe. We assume that the elements of S are all distinct, although it is not
very hard to modify the following analysis to allow for multisets. Let rs(t)
denote the rank of an element t (the fcth smallest element has rank k) and let
S(i) denote the zth smallest element of S. We extend the use of this notation to
subsets of S as well. Thus we seek to identify S(k).

In Step 1 (see following page), we sample with replacement: for instance, if
an element s of S is chosen to be in R on the first of our n3/4 drawings, the
remaining n3/4 — 1 drawings are all as likely to pick s again as any other element
in S. This style of sampling appears to be wasteful, but we employ it here
because it keeps our analysis clean. Sampling without replacement would result
in a marginally sharper analysis, but in practice this may be slightly harder to
implement: throughout the sampling process, we would have to keep track of
the elements chosen so far.

Figure 3.1 illustrates Step 3, where small elements are at the left end of the
picture and large ones at the right. Determining (in Step 4) whether S(fc) € P is
easy since we know the ranks rs(a) and rs(b) and we compare either or both of
these to fc, depending on which of the three if statements in Step 4 we execute.
The sorting in Step 5 can be performed in O(n3/4logn) steps.
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MOMENTS AND DEVIATIONS

Algorithm LazySelect:

Input: A set S of n elements from a totally ordered universe, and an integer k
in [1,n].

Output: The /cth smallest element of S, S{k).

1. Pick /?3/4 elements from S, chosen independently and uniformly at random
with replacement; call this multiset of elements R.

2. Sort R in O(r?3/4logn) steps using any optimal sorting algorithm.

3. Let x = kn~1/\ For t = max{[x - y[n\,\\ and h = min{[x + ^In3'*}, let
a = R{t) and b = R{h). By comparing a and b to every element of S, determine
rs(a) and rs(b).

4. if k < rt>\ then P = {y € S |y < b};
else if k > n - n1/4, let P = {y € S | y > a};
else If k e [n1/4, n - n1/4], let P = {y e S \ a < y < b}\
Check whether S w 6 P and \P\ < 4n3/4 + 2. If not, repeat Steps 1-3 until such
a set P is found.

5. By sorting P in O(|P| log |P|) steps, identify P{*_rs(a)+1), which is S{k).

I I Ml I I • L
\ / L

Elements of R

Figure 3.1: The LazySelect algorithm.

Thus the idea of the algorithm is to identify two elements a and b in S such
that both of the following statements hold with high probability:

1. The element %) that we seek is in P.

2. The set P of elements between a and b is not very large, so that we can sort P
inexpensively in Step 5.

We examine how either of these requirements could fail. We focus on the most
interesting case when k e [ni/4,n — n1/4], so that P = {y € S | a < y < b};
the analysis for the other two cases of Step 4 is similar and in fact somewhat
simpler.

If the element a is greater than S(fc) (or if b is smaller than %)), we fail because
P does not contain Sm. For this to happen, fewer than < of the samples in
R should be smaller than S{k) (respectively, at least h of the random samples
should be smaller than Sm). We will bound the probability that this happens
using the Chebyshev bound.
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3.3 RANDOMIZED SELECTION

The second type of failure occurs when P is too big. To study this, we define
kt = max{l,/c — 2n3/4} and kh = min{fc + 2n3/4, n). To obtain an upper bound on
the probability of this kind of failure, we will be pessimistic and say that failure
occurs if either a < S^,) or b > S{khy We prove that this is also unlikely, again
using the Chebyshev bound. Before we perform this analysis, we establish an
important property of independent random variables. Recall the definition of a
joint density function p(x, y) for random variables X and Y (Definition C.9).

• Definition 3.1: Let X and Y be random variables and f(x,y) be a function of
two real variables. Then,

E[f(X,Y)]=Y/f(x,y)p(x,y).

For independent random variables X and Y we have from Proposition C.6

E[XY] = E[X]E[Y]. (3.2)

Lemma 3.4: Let X\,X2,...,Xm be independent random variables. Let X =

EZi Xi- Then <F2
x=*ZZi

PROOF: Let fii denote E[X,], and \i = YHL\ fa- The variance of X is given by

Expanding the latter and using linearity of expectations, we obtain
m

E[(X - v)2] = £ E[(X, - m)2] + 2 £ E[(X, - to)(Xj -

Since all pairs Xi9Xj are independent, so are the pairs (Xt — Ht), (Xj — nj).
By (3.2), each term in the latter summation can be replaced by E[(Xt — fit)]
E[(Xj — fij)]. Since E[(Xt — fit)] = E[Xt] —/x, = 0, the latter summation vanishes.
It follows that

E[(X - ft)2] = £ MM - tt)2] = J2 aa\,

•
As in the analysis of RandQS in Chapter 1, we measure the running time of

LazySelect in terms of the number of comparisons performed by it.

Theorem 3.5: With probability 1 — O(TT1/4), LazySelect finds S(k) on the first
pass through Steps 1-5, and thus performs only In + o(n) comparisons.

PROOF: The time bound is easily established by examining the algorithm; Step 3
requires In comparisons, and all other steps perform o(ri) comparisons, provided
the algorithm finds S(k) on the first pass through Steps 1-5. We now consider
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MOMENTS AND DEVIATIONS

the first mode of failure listed above: a > S(t) because fewer than f of the
samples in R are less than or equal to S(k) (so that S(k) & P). Let Xi = 1 if the
ith random sample is at most S(fe), and 0 otherwise; thus Pr[X, = 1] = fc/n, and
Pr[Xi = 0] = 1 - k/n. Let X = j£{ Xt be the number of samples of R that
are at most Spy Note that we really do mean the number of samples, and not
the number of distinct elements. The random variables Xt are Bernoulli trials
(Appendix C): each may be thought of as the outcome of a coin toss. Then,
using Lemma 3.4 and the variance of a Bernoulli trial with success probability p

Hx = = fo

and

This implies that ax < w3/8/2. Applying the Chebyshev bound to X,

Pr[|X - nx\ > Jn\ < PT[\X - fix\ >

An essentially identical argument shows that

Pr[&<S(Jk)]=O

Since the probability of the union of events is at most the sum of their probabil-
ities, the probability that either of these events occurs (causing %) to lie outside
P) is O(n"1/4).

Now for the second mode of failure - that P contains more than 4«3/4 + 2
elements. For this, the analysis is very similar to that above in studying the first
mode of failure, with k( and kh playing the role of L The analysis shows that
Pr[a < %)] and Pr[b > S{kh)] are both O(n~l/4) (the reader should verify these
details). Adding up the probabilities of all of these failure modes, we find that
the probability that Steps 1-3 fail to find a suitable set P is O(n~1/4). •

Exercise 3.4: The failure probability can be driven down further at the expense of
increased running time. For a suitable definition of the o(n) term, give an upper
bound on the probability that the algorithm does not find S^ in cn + o(n) steps for
c > 2 .

Exercise 3.5: Theorem 3.5 tells us that the probability that LazySelect terminates in
2n + o(n) steps goes to 1 as n -• oo. Suggest a modification in the algorithm that
brings the constant in the linear term down to 1.5 from 2. We will refine this further
in Problem 4.15.

This adds to the significance of LazySelect: the best known deterministic
selection algorithms use 3n comparisons in the worst case and are quite com-
plicated to implement. Further, it is known that any deterministic algorithm for
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3.4 TWO-POINT SAMPLING

finding the median requires at least In comparisons, so we have a randomized
algorithm that is both fast and has an expected number of comparisons that is
provably smaller than that of any deterministic algorithm. The high probability
bound of the previous exercise can be easily converted into a bound on the
expected running time:

Exercise 3.6: Show that as a direct corollary of Theorem 3.5, the expected running
time of the LazySelect algorithm is 2n + o(n).

Consider what happens when we modify LazySelect to be recursive as follows:
in Step 5, instead of sorting P we recursively use LazySelect to find P(k-rs(a)+\)'
In this recursive version, the size of the candidate set P in which we are seeking
S(fc) is shrinking as the recursion proceeds. Using our analysis we can prove
that at a typical stage of recursion the probability of failure at that stage is
O(|P|~1/4). But \P\ is diminishing, so that this probability of failure is rising
as the algorithm proceeds! Thus, when the candidate set is down to a constant
size, for instance, the failure probability is up to a constant and there is very
little we can do about it. This is a fundamental barrier, not a weakness of our
analysis. This is a typical problem with recursive randomized algorithms, and
rears its head again in parallel randomized algorithms (where we always try to
break a problem into smaller sub-problems) as well. A standard solution is to
stop the recursion when the problem size is down to a certain size, and switch
to a different, more expensive but deterministic technique - as we did by sorting
in Step 5 of LazySelect.

3.4. Two-Point Sampling

We have so far been making use of the fact that the variance of the sum of
independent random variables equals the sum of their variances. In fact, we can
make a stronger statement. Let X and Y be discrete random variables defined
on the same probability space. The joint density function of X and Y is the
function

ThusPr[7 =y]=Zxp(x,y), and

These definitions extend to a set Xi9X2>... of more than two random variables.
Such a set of random variables is said to be pairwise independent if for all i ̂  jt

and xj e 6 R,

Vr[Xt = x|Xj = y]= Pr[X, = x].

We will use the result from the following exercise.
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MOMENTS AND DEVIATIONS

Exercise 3.7: Let n be a prime number and Zn denote the ring of integers modulo
n. For a and b chosen independently and uniformly at random from Zn, let V, =
ai + b mod n. Show that for / ^ j (mod n), /, and Y) are uniformly distributed on
7Ln and pairwise independent. (Make use of the fact that in the field Zn, given fixed
values for y, and yh we can solve y, == ai+b (mod n) and yy =a/ + b (mod n) uniquely
for a and 6.)

The following exercise is similar to Lemma 3.4.

Exercise 3.8: Let Xv X2,..,Xm be pairwise independent random variables, and X =
E ^ X , . Show that <r5= 5X1 of, •

We now consider an application of these concepts to the reduction of the
number of random bits used by RP algorithms (see Definition 1.8). Consider
an RP algorithm A for deciding whether input strings x belong to a language
L. Given x, A picks a random number r from the range TLn = {0,...,« — 1},
for a suitable choice of a prime n, and computes a binary value A(x, r) with the
following properties:

• If x € L, then A(x9 r) = 1 for at least half the possible values of r.

• If x $ L, then A(x, r) = 0 for all possible choices of r.

For a randomly chosen r, A(x, r) = 1 is conclusive proof that x € L, while
4(x, r) = 0 is evidence that x $ L.

For any x G L, we refer to the values of r for which A(x, r) = 1 as witnesses
for x; clearly, at least n/2 of the n possible values of r are witnesses. Of course,
for x £ L, there are no witnesses at all. The definition allows different x e L
to have different sets of witnesses. Generally, n will be too large for us to test
efficiently all the n potential witnesses for a given input x. However, for any
x € L, a random choice of r is a witness with probability at least 1/2.

The fear is that x e L but the randomly chosen value of r yields A(x, r) = 0.
However, we can drive down this probability of incorrectly classifying x by
picking t > 1 values ri,...,rf independently from the range Zn, and computing
A(x, rt) for all of them - in other words, by performing t independent iterations
of the algorithm A on the same input x. If for any i we obtain A{x, r{) = 1, we
declare that x is in L, else we declare that x is not in L. By the independence
of the trials, we are guaranteed that the probability of incorrectly classifying an
input x G L (by declaring that it is not in L) is at most 1~\

Choosing t independent random numbers is expensive in that it requires
Q(t log n) random bits. Suppose instead that we are only willing to use O(log n)
random bits. In particular suppose that we wish to use only two independent
samples from TLn. For a,b chosen independently from Zn, the naive usage of a
and b as potential witnesses, i.e., computing A(x, a) and A(x9 b\ yields an upper
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3.5 THE STABLE MARRIAGE PROBLEM

bound of only 1/4 on the probability of incorrect classification. Here is a better
scheme: let r, = ai + b mod n, and compute A(x,rt) for 1 < J < t. As before, if
for any i we obtain A(x, rt) = 1, we declare that x is in L, else we declare that x
is not in L. What is the probability of incorrectly classifying any input x? We
show that this probability is much smaller than 1/4.

We need to worry about the possibility of making error only in the case
where the input x is in L. Our analysis will be insensitive to the actual values
of r in Zn which are witnesses for x; we will only rely on the fact that at least
half the values of r are witnesses. Clearly A(x, rt) is a random variable over the
probability space of pairs a and b chosen independently from TLn. By the result
of Exercise 3.7, the random r,'s are pairwise independent and, therefore, so are
the random variables Afari), for 1 < i < t. Let Y = J2Ui A(x> ri)' Assuming
that x € L, E[Y] > t/2 and a\ < t/4, or oY < yJi/2. The probability that the
pairwise independent iterations produce an incorrect classification corresponds
to the event {Y = 0}, and

Pr[Y = 0] < Pr[|Y -E[Y] | > t/2].

By the Chebyshev inequality, the latter is at most l/t. Thus, the error probability
is at most l/t, which is a considerable improvement over the error bound of 1/4
achieved by the naive use of a and b. This improvement is sometimes referred
to as probability amplification.

For a random variable X with expectation \ix, we define the /cth central
moment to be /4- = E[(X — fix f], if it exists (Appendix C). For example, the
variance is the second central moment.

Exercise 3.9: The use of the variance of a random variable in bounding its deviation
from its expectation is called the second moment method. In an analogous fashion,
we can speak of the kth moment method: let k be even, and suppose we have a
random variable X for which JJ$ = E[(X ~/Jx)k] exists. Show that

Pt[\X-fjx\>

Why is the /cth moment method difficult to invoke for odd values of kl

The second moment method is generally useful for a random variable X if
ox is o(fix). In a manner similar to "two-point" sampling (the name comes from
the independent choice of two points a and b from which the r, are derived), one
can speak of k-point sampling for k > 2. The reader is referred to Appendix C
for a further discussion of fc-wise independence.

3.5. The Stable Marriage Problem

Consider a society in which there are n men (denoted by capital letters
A,B,C, ...) and n women (denoted by a,b,c...). A marriage M is a 1-1 correspon-

53

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511814075.004
Downloaded from https://www.cambridge.org/core. University of Toronto, on 11 Feb 2020 at 23:32:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511814075.004
https://www.cambridge.org/core


MOMENTS AND DEVIATIONS

dence between the men and the women. Assume a monogamous, heterosexual
society. Each person has a preference list of the members of the opposite sex
organized in a decreasing order of desirability. A marriage is said to be unstable
if there exist two married couples X-x and Y-y such that X desires y more than
x, and y desires X more than Y, implying that X-y will have a tendency to leave
their current mates to marry each other. The pair X-y is said to be dissatisfied
under this marriage. A marriage M in which there are no dissatisfied couples is
called a stable marriage.

• Example 3.1:
For n = 4, consider the following preference lists.

A : abed B : bacd C : adeb D : dcab
a:ABCD b:DCBA c:ABCD d:CDAB

Consider the marriage M given by A-a, B-b, C-c, and D-d. Here C-d is a
dissatisfied couple, implying that M is unstable. However, if C and d marry each
other, and c and D marry each other, we obtain the stable marriage given by
A-a, B-b, C-d, D-c.

The problem of finding stable marriages has several interesting applications,
for example in matching medical graduates to residency positions in hospitals.
It can be shown that for every choice of preference lists there exist at least
one stable marriage. (Curiously enough, this is not the case in a homosexual,
monogamous society with an even number of inhabitants.) We will prove this
by presenting an algorithm to find a stable marriage. The naive approach of
starting with an arbitrary marriage and trying to stabilize it by pairing up
dissatisfied couples does not work.

Fortunately, an equally simple algorithm - the Proposal Algorithm - does
the trick. The basic idea behind this algorithm can be summarized as "man
proposes, woman disposes": each currently unattached man proposes to the
most desirable woman on his list who has not already rejected him, and this
woman then decides whether to accept or reject a proposal. The Proposal
Algorithm is used by hospitals in North America in the match program that
assigns medical graduates to residency positions.

More precisely, at any step, this algorithm will have a partial marriage.
Assume that the men are numbered in some arbitrary manner. The lowest-
numbered unmarried man X proposes to the most desirable woman on his list
who has not already rejected him, call her x. The woman x will accept the
proposal if she is currently unmarried, or if her current mate Y is less desirable
to her than X (poor Y is jilted and reverts to the unmarried state). The algorithm
repeats this process, terminating when every person has been married.

We show that this algorithm always terminates with a stable marriage. A
woman once married will stay married during the course of the algorithm,
although her mates may change with time. Furthermore, the desirability of her
mates (in her view) can only improve with time. Thus at each step either a
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3.5 THE STABLE MARRIAGE PROBLEM

woman gets married for the first time, or an already married woman obtains a
more desirable mate.

An unattached man always has at least one woman available that he can
proposition. This is because every woman he has already proposed to is currently
married, and if he runs out of women then all women are married - this cannot
happen unless all men are married too. Since at each step the proposer will
eliminate one woman on his list, and the total size of the lists is n2, we conclude
that the algorithm uses at most n2 proposals.

We claim that the final marriage M is stable. Otherwise, let X-y be a
dissatisfied pair, where in M they are paired as X-x and Y-y. Since X prefers
y to x, he must have proposed to y before getting married to x. Since y either
rejected X, or accepted him only to jilt him later, her mates thereafter (including
Y) must be more desirable to her than X. Therefore, y must prefer Y to X,
contradicting the assumption that y is dissatisfied.

Our interest here is in performing an average-case analysis of this algorithm.
Thus we are considering a probabilistic analysis of a deterministic algorithm.
We introduce this analysis here because it touches upon several tools that are
important in the analysis of randomized algorithms.

For this average-case analysis, we assume that the men's lists are chosen
independently and uniformly at random; the women's lists can be arbitrary but
must be fixed in advance. Let the random variable TP denote the number of
proposals made during the execution of the Proposal Algorithm. It is clear that
the running time of the algorithm is proportional to TP. At first glance, it may
appear that the distribution TP is extremely difficult to analyze, owing to the
various dependencies between the proposals. For instance, the choice of the
proposer at any step is severely conditioned by the history of the process. The
choice of the woman at each step also depends on the past proposals of the
current proposer.

We present a very simple technique - the Principle of Deferred Decisions -
for getting around such problems using the example of the card game called
Clock Solitaire. In this game we start with a standard deck of 52 cards, which
is assumed to be randomly shuffled. The pack is then divided into 13 piles
of 4 cards each. Each pile is arbitrarily labeled with a distinct member of
{v4,2,3,..., J,<2,K}. On the first move we draw a card from the pile labeled K.
At each subsequent move, a card is drawn from the pile whose label is the face
value of the card drawn at the previous move (the suits of the cards are ignored
in this game). The game ends when an attempt is made to draw a card from an
empty pile. We win the game if, on termination, all 52 cards have been drawn;
in all other cases we lose the game.

Let us estimate the probability of winning the game. Observe that the game
always terminates in an attempt to draw a card from the K pile: the last card
drawn has to be a K. This is because there are 4 cards of each denomination,
and except for the K pile, each pile initially has 4 cards.

A naive view of the probability space for this game considers all possible
ways of dealing out the cards. Each point in this space corresponds to some
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MOMENTS AND DEVIATIONS

partition of the 52 cards into 13 distinct piles, with an ordering defined on the
4 cards in each pile. Using this approach, computing the probability of a win
would be a formidable task, since at each move of the game we introduce a new
source of dependency.

We now examine a second probability space that better captures the dynamics
of the game. The idea is to let the random choices unfold with the progress of
the game, rather than fix the entire set of choices in advance. At each draw any
unseen card is equally likely to appear. Thus, the process of playing this game
is exactly equivalent to repeatedly drawing a card uniformly at random from a
deck of 52 cards. A winning game corresponds to the situation where the first
51 cards drawn in this fashion contain exactly 3 Kings. The probability of the
52nd card drawn being a King is exactly 1/13; this is also the probability of
winning the game.

The idea of the Principle of Deferred Decisions is to not assume that the
entire set of random choices is made in advance. Rather, at each step of the
process we fix only the random choices that must be revealed to the algorithm.

The Principle of Deferred Decisions can be used to simplify the average-case
analysis of the Proposal Algorithm as follows. We do not assume that the men
have chosen their (random) preference list in advance. In fact, let us suppose
that men do not know their lists to start with. Each time a man has to make
a proposal, he picks a random woman from the set of women not already
propositioned by him, and proceeds to propose to her. Clearly, this is equivalent
to choosing the random preference lists prior to the execution of the algorithm.

The only dependency that remains is that the random choice of a woman at
any step depends on the set of proposals made so far by the current proposer.
We can eliminate even this dependency, albeit at the cost of modifying the
behavior of the algorithm. Suppose that each time a man makes a proposal, he
chooses a woman uniformly at random from the set of all n women, including
those to whom he has already proposed. In other words, he forgets the fact that
these women have already rejected him. Call this new algorithm the Amnesiac
Algorithm.

How does the performance of the new algorithm relate to that of the original
one? Every proposal a man makes to a woman who has already rejected him
will be rejected again. Thus, the output produced by the Amnesiac Algorithm is
exactly the same as that of the original Proposal Algorithm. The only difference
is that there are some wasted proposals in the Amnesiac Algorithm. Let TA

denote the number of proposals made by the Amnesiac Algorithm. Clearly, TA

stochastically dominates TP (Appendix C): for all m, Pr[T,i > m] > Pr[TP > m].
Therefore, it suffices for an upper bound to analyze the distribution of TA.

A benefit of analyzing TA is that we need only count the total number of
proposals made, without regard to the name of the proposer at each stage. This
is because each proposal is independently made to one of the n women chosen
uniformly at random. Moreover, the algorithm terminates with a stable marriage
once all women have received at least one proposal each. As will become clear
shortly, bounding the value of TA is a special case of the Coupon Collector's
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3.6 THE COUPON COLLECTOR'S PROBLEM

Problem described in the next section. The following theorem is implied by
Theorem 3.8, a result about deviations in the Coupon Collector's Problem that
we will prove below in Section 3.6.

Theorem 3.6: For any constant c€1R, and m = n\nn + cn,

3.6. The Coupon Collector's Problem

In the coupon collector's problem, there are n types of coupons and at each
trial a coupon is chosen at random. Each random coupon is equally likely to
be of any of the n types, and the random choices of the coupons are mutually
independent. Let m be the number of trials. The goal is to study the relationship
between m and the probability of having collected at least one copy of each
of the n types. The reader may wish to make the correspondence between this
process and an occupancy problem (Section 3.1) in which m balls are randomly
distributed in n bins. This process will arise again in the study of random walks
(Chapter 6). In this section we provide an amazingly precise answer to this
question, while illustrating some fundamental ideas in the analysis of stochastic
processes of the type that arise in randomized algorithms.

3.6.1. An Elementary Analysis

Let X be a random variable defined to be the number of trials required to collect
at least one of each type of coupon. We first determine the expected value of X.
Let Ci, C2, ..., Cx denote the sequence of trials, where C, G {l, ...,n} denotes
the type of the coupon drawn in the rth trial. Call the rth trial Q a success if
the type Q was not drawn in any of the first i — 1 selections. Clearly C\ and Cx

are always successes.
We divide the sequence into epochs, where epoch i begins with the trial

following the rth success and ends with the trial on which we obtain the (i+ l)st
success. Define the random variable Xi9 for 0 < i < n — 1, to be the number of
trials in the rth epoch, so that

n - \

* = £*••
1=0

Further, let p, denote the probability of success on any trial of the rth epoch.
This is the probability of drawing one of the n — i remaining coupon types and
so,

The random variable Xt is geometrically distributed with parameter pt (see
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MOMENTS AND DEVIATIONS

Appendix C). Thus, the expected value of Xt is 1/p, and its variance is

By linearity of expectation,

4
>=0 i=0 i=0

By Proposition B.4 the nth Harmonic number Hn is asymptotically equal to
In n + ©(1), implying that

Since the X,'s are independent, we can determine the variance of X using
Proposition C.9.

n - l

4 =
i=0
n-l

m

n

The sum X]"=i V1'2 converges to the constant TT2/6 for n approaching oo; hence

lim 4 = *
n-*oo n1 6

Our next goal is to derive sharper estimates of the typical value of X. More
precisely, we will show that the value of X is unlikely to deviate far from its
expectation, or is sharply concentrated around its expected value. This entails
bounding the tail probabilities of the distribution of X. The second moment
method does not go far toward establishing such a result.

Exercise 3.10: Use the Chebyshev inequality to find an upper bound on the proba-
bility that X > fin In n, for a constant 0 > 1.

Let £\ denote the event that coupon type i is not collected in the first r trials.
Using Proposition B.3 (Appendix B), we obtain that

This bound is n& for r = j8n In n.
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3.6 THE COUPON COLLECTOR'S PROBLEM

Using the fact that the probability of a union of events is always less than
the sum of the probabilities of these events, we obtain for r = jSn ln n,

r] =
i = l (=1

We now study the probability that X deviates from its expectation nHn by the
amount en, for any real-valued constant c. We will see that this probability
drops very quickly as we increase the absolute value of c.

3.6.2. The Poisson Heuristic

Before we show the sharp concentration result for X, the following heuristic
argument will help to establish some intuition. The heuristic argument is based
on the approximation of the binomial distribution by the Poisson distribution
(see Appendix C for definitions of these distributions). The material in this
section, although useful, is not an essential prerequisite for subsequent topics
and may be omitted in the first reading.

Let N\ denote the number of times the coupon of type i is chosen during
the first r trials; the event £] is the same as the event {N\ — 0}. The random
variable N\ has the binomial distribution with parameters r and p = \ /n (see
Appendix C). This means that the probability that N\ = x, for 0 < x < r, is as
follows:

Let k be a positive real number. A (non-negative integer) random variable Y
has the Poisson distribution with parameter k if for any non-negative integer y,

Pr[y = y] = ) l l l

For suitably small X and as r approaches oo, the Poisson distribution with
parameter k = rp is a good approximation to the binomial distribution with
parameters r and p. In the current setting, we can approximate the distribution
of A/]* by the Poisson distribution with parameter k = r/n. We will ignore the
fact that k may not be "suitably small" and that there could be significant
error in this approximation; after all, this is only intended to be a heuristic
calculation. Using this approximation, we calculate the probability of the event
£\ as follows:

}0e-X
Pr[£J] = Pr[N[ = (>] « — £-= e~rl

\ (3.3)

The main benefit in using the Poisson approximation is that now we can
claim that the events £\, for 1 < i < n, are "almost independent," even though it
is quite easy to see that there is indeed some dependence between these events.
In particular, we make the following informal claim to complete the heuristic
calculation.
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Claim: For 1 < i < n, and for any set of indices {ji9...9jk} n°t containing i,

PROOF: The proof follows from the following approximate calculations,

The first line follows from the definition of conditional expectation (Defini-
tion C.4), the second from an elementary probability calculation, and the third
from Proposition B.3 (Appendix B). Since the last expression is the approximate
value of Pr[£'L we obtain the desired result. •

If the approximation in (3.3) were exact, we would obtain that the events S\
are truly independent (Appendix C). In the following computation, we make
the heuristic assumption of independence based on the approximation of (3.3).
We then obtain that for 1 < i < n, the probability that all coupon types are
collected in the first m trials is given by:

Let m = n(ln n + c) for any constant c e R . Then, by the preceding argument,
we obtain that

Observe that this probability e~e~c is close to 1 for large positive c, and is
negligibly small for large negative c. Thus, the probability of having collected
all n coupon types abruptly changes from nearly zero to almost one in a small
interval centered around n In n. Of course, all this is contingent on our heuristic
estimates being close to the true values. The power of this Poisson heuristic
is that it gives a quick back-of-the-envelope type estimation of probabilistic
quantities, which hopefully provides some insight into the true behavior of those
quantities. As we will see in Section 3.6.3, a more rigorous but cumbersome
argument can often be used to justify the conclusions obtained from such
heuristic arguments.
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3.6 THE COUPON COLLECTOR'S PROBLEM

3.6.3. A Sharp Threshold

We now convert the heuristic argument from the previous section into a rigorous
(but significantly more complex) proof using the Boole-Bonferroni Inequalities
(Proposition C.2). But first we prove the following technical lemma.

Lemma 3.7: Let c be a real constant, and m = nlnn + en for positive integer n.
Then, for any fixed positive integer k,

PROOF: Using Proposition B.3.2, we have that

g ^ f l - l . ) < ( l - - ) <e=?.
\ nj \ nj

Observe that e-km/n = n-k e-ck. Further,

l i m ( 1 - - V = 1

and (by Proposition B.2),

Putting all this together yields the desired result. •

Theorem 3.8: Let the random variable X denote the number of trials for collecting
each of the n types of coupons. Then, for any constant c G R , and m = nlnn + cn,

lim Pr[X > m] = l - e-e~c.
n—>oo

PROOF: We have that the event {X > m} = U"=1£f. BY the Principle of
Inclusion-Exclusion,

where

Pi ^

Let S£ = Pf - P2 + P + (-l)*+1Pfc" denote the partial sum formed by the
first k terms of this series. By the Boole-Bonferroni inequalities (Proposition C.2),
we have the bracketing property of the partial sums:
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By symmetry, all the fc-wise intersections of the events £™ are equally likely.
This implies that

?k~ W P r [ n ^ i ] '
Moreover, the probability of the intersection of the k events £™, ..., £™ is the
probability of not collecting any of the first k coupons in m trials, namely
(l-k/n)m. Therefore

For all positive integers fc, define Pk — e ck/k\. By Lemma 3.7 we have that
for each k

lim P? = Pk.
n->oo

Define the partial sums of the terms Pk as

Notice that the right-hand side consists precisely of the first k terms of the power
series expansion of f(c) = 1 — e~e~\. We conclude that

lim Sk = f(c).
k-«x>

That is, for all e > 0, there exists k* > 0 such that for any k> k\

\Sk-f(c)\<6.

Since lim,,.^ Pk
n — Pk, it follows that lim,,.^ Ŝ " = &. Equivalently, for all

e > 0 and /c, when n is sufficiently large, \Sg — Sk\ < e. Thus, for all e > 0, any
fixed k > k\ and n sufficiently large,

which implies that

\S;-f(c)\<2e

and that

Using the bracketing property of partial sums, we obtain that for any e > 0 and
n sufficiently large,

This implies the desired result that

lim Pr[U,-£n = /(c) - 1 - e~e'\

n
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3.6 THE COUPON COLLECTOR'S PROBLEM

By this theorem, for any real constant c, we have

lim Pr[X < n(lnn - c)] = e~*

n—*co

and

lim Pr[X > n(ln n + c)] = 1 - e~e".
n—*oo

Thus, we obtain that
lim Pr[n(ln n-c)<X < n(ln n + c)]= <Te~c - e"gC.
n—+00

As the value of c is increased, it can be verified that this probability rapidly
approaches 1. In other words, with extremely high probability, the number of
trials for collecting all n coupon types lies in a small interval centered about its
expected value. This result is almost like a deterministic result since it so sharply
identifies the threshold value for collecting all coupons. We refer to such results
as sharp threshold results.

Notes

Comprehensive treatises on occupancy problems are the books by Johnson and
Kotz [222], and by Kolchin, Chistiakov, and Sevastianov [266]. However, most of
the results in these books concern the behavior of the distributions of various random
variables in the limit as n becomes large. (See also the various discussions of occupancy
problems in the books by Feller [142, 143].) Generally, we will be concerned with
statements resembling the ones in Section 3.1, involving asymptotic estimates on random
variables and probabilities. We will return to such estimates for occupancy problems in
Chapter 4. Recent work by Azar, Broder, Karlin, and Upfal [35] builds on the basic
occupancy problem and points out many applications to computer science.

The history of tail inequalities such as the Chebyshev bound dates back to the early
days of probability theory. Following Chebyshev's bound [394], Markov [293] observed
that the same idea could be used with higher moments. Kolmogorov [267] went further
and remarked that Pr[X > r] < E\f(X)]/s for any function f(X\ provided that E[/(Z)]
exists and f(x) > s > 0 for all x > r. The latter idea was exploited by Bernstein and by
Chernoff in a manner we will describe in Chapter 4.

Classic sources for deterministic selection algorithms are the papers of Blum, Floyd,
Pratt, Rivest, and Tarjan [65], and of Schonhage, Paterson, and Pippenger [364].
The LazySelect algorithm presented here is a variant on one reported by Floyd and
Rivest [151]. The algorithm described therein is a recursive algorithm, and does not sort
after the first level of random sampling as we do. The lower bound of 2n for median
selection is due to Bent and John [54].

The construction of pairwise independent random variables in Exercise 3.7 is given in
Joffe [214]. Its application to the reduction of random bits used by abstract randomized
algorithms is due to Chor and Goldreich [97]; Luby [282] presented this idea in the
context of a concrete problem we will study in Chapter 12. The two-point sampling tech-
nique has been developed into a powerful technique for reducing the use of randomness,
especially for the derandomization of algorithms (see the Notes section of Chapter 12).

The Proposal Algorithm for stable marriages is due to Gale and Shapley [161]. The
book by Gusfield and Irving [188] provides a comprehensive treatment of results related
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MOMENTS AND DEVIATIONS

to stable marriages. Our presentation of the average-case analysis of the Proposal
Algorithm is drawn from Knuth's monograph [263]. The power and applicability of the
Poisson heuristic is explored in great detail in the monograph by Aldous [12].

Problems

3.1 Consider an occupancy problem in which n balls are independently and
uniformly distributed in n bins. Show that, for large n, the expected number
of empty bins approaches n/e, where e is the base of the natural logarithm.
What is the expected number of empty bins when m balls are thrown into n
bins? (See Theorem 4.18.)

3.2 Suppose m balls are thrown into n bins. Give the best bound you can on m to
ensure that the probability of there being a bin containing at least two balls
is at least 1/2.

3.3 A parallel computer consists of n processors and n memory modules. During a
step, each processor sends a memory request to one of the memory modules.
A memory module that receives either one or two requests can satisfy its
request(s); modules that receive more than two requests will satisfy two
requests and discard the rest.

(a) Assuming that each processor chooses a memory module independently
and uniformly at random, what is the expected number of processors whose
requests are satisfied? Use the approximation (1 — I//?)" « 1/e if necessary.

(b) Repeat the computation for the case where each memory module can
satisfy only one request during a step.

3.4 Consider the following experiment, which proceeds in a sequence of rounds.
For the first round, we have n balls, which are thrown independently and
uniformly at random into n bins. After round /, for / > 1, we discard every ball
that fell into a bin by itself in round /. The remaining balls are retained for
round / - M, in which they are thrown independently and uniformly at random
into the n bins. Show that there is a constant c such that with probability
1 — o(1), the number of rounds is at most clog log n.

3.5 Let X be a random variable with expectation JJX and standard deviation ox.

(a) Show that for any t € R + ,

This version of the Chebyshev inequality is sometimes referred to as the
Chebyshev-Cantelli bound.

(b) Prove that
2

Pr[\X-fj\>tcr}< 1+f2 '

Under what circumstances does this give a better bound than the Chebyshev
inequality?
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PROBLEMS

3.6 Let V be a non-negative integer-valued random variable with positive expec-
tation. Prove the following inequalities.

(a)

pr [y=o^E [ y 2 i-yy ] 2

E[y]2

(b)

< Pr[y ^ 0] <: E[y]

(c) Explain why the second inequality always gives a stronger bound than the
first inequality.

3.7 Let a and b be chosen independently and uniformly at random from Zn =
{0,1,2,..., n - 1}, where n is a prime. Suppose we generate t pseudo-random
numbers from TLn by choosing r, = ai+b mod n, for 1 < / < t. For any e e [0,1],
show that there is a choice of the witness set W c= Zn such that \W\ >en and
the probability that none of the r,'s lie in the set W is at least (1 -e)2/4t.

3.8 Suggest a scheme for "four-point" sampling from the range Zn where n is a
prime. For t < n samples r^...,rt using this scheme, give an upper bound on
the probability that all t attempts fail to discover a witness given x e L and
compare this with the bound of 1/16 that the naive use of four samples would
yield. En route, derive an upper bound on the fourth central moment of the
sum of four-way independent random variables.

3.9 (Due to D.R. Karger and R. Motwani [233].)
(a) Let S, T be two disjoint subsets of a universe U such that \S\ = \T\ = n.
Suppose we select a random set R c u by independently sampling each
element of U with probability p. We say that the random sample R is good
if the following two conditions hold: R nS = 0 and R nT ^ 0. Show that for
p = 1/n, the probability that R is good is larger than some positive constant.

(b) Suppose now that the random set R is chosen by sampling the elements
of U with only pairwise independence. Show that for a suitable choice of the
value of p, the probability that R is good is larger than some positive constant.

3.10 The sharp threshold result in the coupon collector's problem does not imply
that the probability of needing more than en logn trials goes to zero at a
doubly exponential rate if c were not a constant, but were allowed to grow
with n. Let the probability of requiring more than en log n trials be p(c).
For constant c, show that 1/p(c) can be bounded from above and below by
polynomials in n.

3.11 Consider the extension of the coupon collector's problem to that of collecting
at least k copies of each coupon type. Show that the sharp threshold for the
number of selections required (denoted X{k)) is centered atn(lnn+(/c—1) In Inn).
In other words, for any positive integer k and constant c e R, prove that

lim Pr[X(/c) > n(ln n + (k - 1) In In n + c)] = e~e~c.
n—*<x>
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MOMENTS AND DEVIATIONS

3.12 Consider the following process related to the coupon collector problem. There
are n bins and n players, and each player has an infinite supply of balls. The
bins are all initially empty. We have a sequence of rounds: in each round,
each player throws a ball into an empty bin chosen independently at random
from all currently empty bins. Let the random variable Z be the number of
rounds before every bin is non-empty. Determine the expected value of Z.
What can you say about the tail of Z's distribution?

3.13 Let B be a random bipartite graph on two independent sets of vertices U
and V, each with n vertices. For each pair of vertices u e U and v e V, the
probability that the edge between them is present is p(n), and the presence
of any edge is independent of all other edges. Let p(n) = (In n + c)/n for some
ceIR.
(a) Show that the probability that B contains an isolated vertex is asymptoti-
cally equal to e~2e~c.

(b) Suggest and prove a generalization of this to random non-bipartite graphs.

3.14 (Due to R.M. Karp.) Consider a bin containing d balls chosen at random
(without replacement) from a collection of n distinct balls. Without being able
to see or count the balls in the bin, we would like to simulate random sampling
with replacement from the original set of n balls. Our only access to the balls
is that we can sample without replacement from the bin.

Consider the following strategy. Suppose that k < d balls have been drawn
from the bin so far. Flip a coin with the probability of HEADS being k/n. If
HEADS appears, then pick one of the k previously drawn balls uniformly at
random; otherwise, draw a random ball from the bin. Show that each choice
is independently and uniformly distributed over the space of the n original
balls. How many times can we repeat the sampling?

3.15 (Due to D. Angluin and L.G. Valiant [28].) Let B denote a random bipartite
graph with n vertices in each of the vertex sets U and V. Each possible
edge, independently, is present with probability p(n). Consider the following
algorithm for constructing a perfect matching (see Section 7.3) in such a
random graph. Modify the Proposal Algorithm of Section 3.5 as follows. Each
u e U can propose only to adjacent v e V. A vertex v e V always accepts a
proposal, and if a proposal causes a "divorce," then the newly divorced u € U
is the next to propose. The sampling procedure outlined in Problem 3.14 helps
implement the Principle of Deferred Decisions. How small can you make the
value of p(n) and still have the algorithm succeed with high probability? The
following fact concerning the degree d(v) of a vertex v in 8 proves useful:

Pr[d(v)<(1-0)np] = <
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