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Here we give a rigorous analysis of the Karp-Rabin1 algorithm as described in Section 32.2 of CLRS.
We assume that the alphabet is Σ = {0, 1}, and d = |Σ| = 2, and also that q is chosen to be a
uniformly random prime in {2, . . . , Q} for an appropriately large integer Q. A slight difference
in notation is that we use p and ts to denote the numbers

∑m
i=1 2m−iP [i] and

∑m
i=1 2m−iT [s+ i],

respectively, and we use p̃ = p mod q and t̃s = ts mod q. What we call p̃ and t̃s is called p and ts
in the code on page 993 of CLRS.

We prove the following theorem:

Theorem 1. There exists a constant C such that the following holds. Assume that m ≥ 1, n ≥ 2,
Q ≥ Cmn ln(mn), and q is chosen uniformly at random in the set of prime numbers in {2, . . . , Q}.
Then, with probability at least 1/2, the Karp-Rabin algorithm reports no false matches.

Here the constant C is independent of Q, m, and n, and of all other parameters of the problem. It
is an “absolute constant”.

We need two basic facts from number theory to prove this theorem.

Lemma 2. Any positive integer X has at most log2X distinct prime divisors.

Proof. By the Fundamental Theorem of Arithmetic, we can write X uniquely as the product X =
p1p2 . . . pk, where p1, . . . , pk are all (not necessarily distinct) prime numbers. Then the number of
prime divisors ofX is at most k. Because any prime number is at least 2, we haveX = p1 . . . pk ≥ 2k,
and therefore, k ≤ log2X.

The second fact is the famous Prime Number Theorem.

Lemma 3. Let π(Q) be the number of primes in {2, . . . , Q}. There exists a constant c > 0,
independent of Q, such that for any integer Q ≥ 2, π(Q) ≥ cQ

lnQ .

Proving this lemma would take us far beyond the scope of this class. The version we cited is a bit
weaker than the prime number theorem, and is due to Chebyshev.

Proof of Theorem 1. Define S = {s : ts 6= p} to be the set set of shifts for which there is no match.
Define the number

X =
∏
s∈S
|ts − p|.

X is a positive integer. Since |S| ≤ n −m and |ts − p| ≤ 2m, we have X ≤ 2m(n−m) ≤ 2mn. By
Lemma 2, this implies that X has at most mn prime divisors.

1Note that CLRS mysteriously calls this algorithm Rabin-Karp, but we will refer to it as Karp-Rabin, to match
both the alphabetical order and the order in which the names appear on the original paper.
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Notice that we have a false match exactly when there exists a shift s ∈ S for which t̃s = p̃, which
happens exactly when q divides |ts− p|. Therefore, if there is any false match, then q would divide
X. This means that

P(false match) ≤ P(q divides X) =
#{prime divisors of X}

π(Q)

≤ mn ln(Cmn ln(mn))

cCmn ln(mn)

=
1

cC
+

ln(C)

cC ln(mn)
+

ln ln(mn)

cC ln(mn)
.

It is easy to prove (using some basic calculus, for example), that for large enough C the right hand
side can be made less than 1

2 , or any other fixed constant.

A few comments on the algorithm are in order:

• Notice that p̃ and t̃s are numbers in {0, . . . , q − 1} ⊆ {0, . . . , Q − 1}, and any such number
can be written in Θ(logmn) bits. In the word RAM model of computation, we can perform
arithmetic operations and comparisons on numbers of this size in time O(1). This means that
the algorithm runs in worst-case time O(m+ n), i.e. linear in the size of the input.

• This is a Monte Carlo algorithm, and may make a mistake with constant probability. As usual,
by running the algorithm several times (or just choosing several different random primes, and
comparing the fingerprints for all these choices) we can make this constant arbitrarily small
without affecting the asymptotic complexity. However, we may want to verify every match.
This turns the algorithm into a Las Vegas algorithm. The analysis above can be modified to
show that if there are ` true matches, the Karp-Rabin algorithm with verification will take
expected time O(m`+ n), which is still quite fast if ` is small.

• We have not discussed how to pick a random prime in {2, . . . , Q}. The only method I am
aware of is: pick random integers in {2, . . . , Q} and output the first one which is a prime
number. This technique is called rejection sampling : make sure you understand why
it gives a uniform distribution on the primes in {2, . . . , Q}. We only need O(logQ)
samples in expectation before we find a prime: this is a consequence of Lemma 3. (Make
sure you understand why this is true as well.) In order to implement this algorithm, we
need an algorithm to check whether a number is prime. There is a beautiful efficient Monte
Carlo algorithm for this problem, due to Miller and Rabin. See Section 31.8. of CLRS.
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