CSC473: Advanced Algorithm Design

Worksheet: Variance and Chebyshev's Inequality Aleksandar Nikolov

In this worksheet you will:

- Recall the concept of *variance* of a random variable;
- Recall some basic facts about variance of sums of random variables;
- Use Chebyshev's Inequality to analyze sampling algorithms.

Variance. The variance of a real-valued random variable X is defined as $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$. It measures how much X deviates from its expectation on average. The following calculation is often very useful:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2X \cdot \mathbb{E}[X] + \mathbb{E}[X]^2]$$
$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Chebyshev's Inequality Let X be a random variable. For any t > 0,

$$\mathbb{P}(|X - \mathbb{E}[X]| > t) < \frac{\operatorname{Var}(X)}{t^2}.$$

Exercises:

- 1. Compute the variances of the following random variables.
 - **a**. X which is uniform in $\{0, 1\}$.

 $\operatorname{Var}(X) =$

b. X which is uniform in $\{0, 1, 2\}$.

 $\operatorname{Var}(X) =$

c. X which takes value 0 with probability 1/3, and value 1 with probability 2/3, and Y which takes value 0 with probability 2/3, and value 1 with probability 1/3

$$\operatorname{Var}(X) = \operatorname{Var}(Y) =$$

- **2**. Let $X = X_1 + \ldots + X_n$, where X_1, \ldots, X_n are independent and uniform in $\{0, 1\}$. Then Var(X) =
- **3.** Let S be sampled from $[n] = \{1, ..., n\}$ by including each $i \in [n]$ into S independently with probability p.

a. $\mathbb{E}[|S|] =$

b.
$$\operatorname{Var}(|S|)$$

=

c. Using Chebyshev's inequality, show that, if $\mathbb{E}[|S|] \ge \frac{1}{\varepsilon^2 \delta}$, then

$$\mathbb{P}\Big((1-\varepsilon)\mathbb{E}[|S|] \le |S| \le (1+\varepsilon)\mathbb{E}[|S|]\Big) \ge 1-\delta$$