Rounding and Approximation Algorithms
 CSC 473 Advanced Algorithms

Approximation Algorithms

- Many natural and important optimization problems are NP-Hard
- Vertex/Set cover, Max SAT, Max Cut, Sparsest Cut, Traveling Salesman, ...
- No worst-case polynomial time exact algorithms
- Ways around the hardness:
- Approximation algorithms: output an approximately optimal solution in worst-case polynomial time
- Algorithms that are efficient on special instances: e.g. Max Cut in planar graphs
- Algorithms that are exponential in some parameter: $2^{O(k)}$ poly(n) time algorithm to find a path of length k.

Computer Science
UNIVERSITY OF TORONTO

Vertex Cover

- Min Vertex Cover (VC): on input a graph $G=(V, E)$ and vertex weights $w \in \mathbb{R}^{V}$ find set $C \subseteq V$ such that
- for all $(u, v) \in E, u \in C$, or $v \in C$, or both
- $w(C)=\sum_{u \in C} w_{v}$ is minimized
- NP-hard for non-bipartite graphs
- Factor 2 approximation
- Formulate as an IP, and relax to an LP
- Round (possibly fractional) optimal LP solution to a $\{0,1\}$ solution

LP Relaxation

- Let $\operatorname{OPT}(G, w)=\min \{w(C): C$ is a vertex cover $\}$

- $L P(G, w)=$ value of the LP
- $\operatorname{OPT}(G, w)=$ value of the $\mathrm{IP} \geq L P(G, w)$

Deterministic Rounding

- Will show: $L P(G, w) \leq O P T(G, w) \leq 2 \cdot L P(G, w)$
- Let y be an optimal LP solution and define

$$
C=\left\{u \in V: y_{u} \geq 1 / 2\right\}
$$

- C is a vertex cover

$$
\begin{gathered}
\\
\\
\\
\text { min } \sum_{u \in V} w_{u} y_{u} \\
\text { s.t. } \\
\\
\\
y_{u}+y_{v} \geq 1 \quad \forall(u, v) \in E \\
0 \leq y_{u} \leq 1 \quad \forall u \in V
\end{gathered}
$$

- If $(u, v) \in E$ then $\max \left\{y_{u}, y_{v}\right\} \geq \frac{1}{2}$
- C is a 2-approximate solution: Let $x_{u}=1 \Leftrightarrow u \in C$. Then $x_{u} \leq 2 y_{u}$ and

$$
w(C)=\sum_{u \in V} w_{u} x_{u} \leq 2 \sum_{u \in V} w_{u} y_{u}=2 \cdot L P(G, w) \leq 2 \cdot O P T(G, w)
$$

Set Cover

- Min Set Cover: on input $S_{1}, S_{2}, \ldots, S_{m} \subseteq[n]$ where $\bigcup_{i=1}^{m} S_{i}=[n]$, and weights $w \in \mathbb{R}^{m}$, find set $C \subseteq[m]$ such that
- $\mathrm{U}_{i \in C} S_{i}=[n]$
- $w(C)=\sum_{i \in C} w_{i}$ is minimized
- Vertex cover is a special case
- Factor $O(\log n)$ approximation
- No better factor possible, unless $P=N P$

LP Relaxation

- Let $O P T=\min \{w(C): C$ is a vertex cover $\}$

s.t. $\quad \sum_{i: j \in S_{i}} y_{i} \geq 1 \quad \forall j \in[n]$ $0 \leq y_{i} \leq 1 \quad \forall i \in[m]$
- $L P=$ value of the LP
- $O P T=$ value of the $\mathrm{IP} \geq L P$

Randomized Rounding

$$
\begin{array}{cc}
& \min \sum_{i=1}^{m} w_{i} y_{i} \\
& \sum_{i: j \in S_{i}} y_{i} \geq 1 \quad \forall j \in[n] \\
\text { s.t. } & 0 \leq y_{i} \leq 1 \quad \forall i \in[m] \\
\hline
\end{array}
$$

- $y=$ optimal LP solution
- For $t=1, \ldots, \ell=\ln (2 n)$
- $C_{t}=\varnothing$
- For $i=1, \ldots, m$: Add i to C_{t} with probability y_{i}
- $C=C_{1} \cup \cdots \cup C_{\ell}$
- Claim 1. $\mathbb{E}[w(C)] \leq \ell \cdot L P$
- $Z_{t, i}=1$ if $i \in C_{t}, 0$ otherwise. $\mathbb{E}\left[Z_{t, i}\right]=\mathbb{P}\left(Z_{t, i}=1\right)=y_{i}$.

$$
\mathbb{E}[w(C)] \leq \mathbb{E}\left[w\left(C_{1}\right)\right]+\cdots+\mathbb{E}\left[w\left(C_{\ell}\right)\right]=\sum_{t=1}^{\ell} \sum_{i=1}^{m} w_{i} \mathbb{E}\left[Z_{t, i}\right]=\ell \sum_{i=1}^{m} w_{i} y_{i}
$$

Randomized Rounding

	$\min \sum_{i=1}^{m} w_{i} y_{i}$
s.t.	$\sum_{i: j \in S_{i}} y_{i} \geq 1 \quad \forall j \in[n]$
$0 \leq y_{i} \leq 1 \quad \forall i \in[m]$	

- $y=$ optimal LP solution
- For $t=1, \ldots, \ell=\ln (2 n)$
- $C_{t}=\varnothing$
- For $i=1, \ldots, m$: Add i to C_{t} with probability y_{i}
- $C=C_{1} \cup \cdots \cup C_{\ell}$
- Claim 2. $\mathbb{P}(C$ is a set cover $) \geq \frac{1}{2}$

$$
\forall j: \mathbb{P}\left(\forall t: j \notin \bigcup_{i \in C_{t}} S_{i}\right)=\prod_{t=1}^{\ell} \prod_{i: j \in S_{i}}\left(1-y_{i}\right) \leq e^{-\ell \sum_{i: j \in S_{i}} y_{i}} \leq e^{-\ell}=\frac{1}{2 n}
$$

- By a union bound, the probability that some j is not covered is $\leq n \cdot \frac{1}{2 n}=\frac{1}{2}$

Randomized Rounding

- Claim 1. $\mathbb{E}[w(C)] \leq \ell \cdot L P$
- Claim 2. $\mathbb{P}(C$ is a set cover $) \geq \frac{1}{2}$
- Repeat until C is a set cover. Expected weight is $\mathbb{E}[w(C) \mid C$ a cover $]$

$$
\begin{aligned}
\mathbb{E}[w(C)]= & \mathbb{E}[w(C) \mid C \text { a cover }] \mathbb{P}(C \text { a cover }) \\
& +\mathbb{E}[w(C) \mid C \text { not a cover }] \mathbb{P}(C \text { not a cover }) \\
\geq & \mathbb{E}[w(C) \mid C \text { a cover }] / 2 \\
\mathbb{E}[w(C) \mid C \text { a cover }] \leq & 2 \mathbb{E}[w(C)] \leq 2 \ell \cdot L P=O(\log n) \cdot L P
\end{aligned}
$$

Computer Science
UNIVERSITY OF TORONTO

