Matchings: Max Cardinality and Min Cost

CSC 473 Advanced Algorithms
Matchings in graphs

• A matching in a graph \(G = (V, E) \) is a subset \(M \subseteq E \) of edges so that no two edges in \(M \) share an endpoint.

• **Maximum cardinality matching**: given input graph \(G \), find a matching \(M \) of maximum size
 • Perfect matching: size \(\frac{|V|}{2} \), i.e., all edges are matched
 • Solvable in polynomial time
Bipartite Graphs

- We will focus on max cardinality matching in bipartite graphs.
- **Bipartite graph**: $G = (V, E)$ so that we can partition V into disjoint sets A and B, and all edges in E have one endpoint in A and one in B
 - We can check if G is bipartite in time $O(n + m)$
 - If it is, we can also find A and B in this time
- **Fact**: a graph is bipartite if and only if it does *not* have an odd cycle
 - *only if*: any path alternates A and B and can only come back to the starting node after an even numbers of hops.

Algorithm for general graphs is a deep result of Jack Edmonds.

Not bipartite
Bipartite Matching
Finding the Maximum Matching

- Greedy (keep adding edges while you can) does not work

- Do you know a polynomial time algorithm to find the max matching?
 - Compute a max flow
 - We will see a more combinatorial algorithm
Augmenting Paths

• For a bipartite graph G and a matching M, a path P is alternating if edges in P alternate between being in M and being outside of M.

• An alternating path is augmenting if it starts and ends in unmatched vertices.

1 -> a -> 2 -> b -> 3 -> c is alternating

2 -> b -> 3 -> c is augmenting
Augmenting Paths

- An alternating path is **augmenting** if it starts and ends in unmatched vertices.
- Let $P = \text{augmenting path}$. Set $M' = M \triangle P = (M \cup P) \setminus (M \cap P)$.
- M' is a matching and $|M'| = |M| + 1$

2 -> b -> 3 -> c is augmenting

First and last vertex in P unmatched, and others just switch which ones they are matched to.

One more non-matching edge in P than matching edges: size of matching increases by 1.

Flip which edges are in M along P.
Characterizing Max Matchings

Theorem. A matching M is of maximum cardinality if and only if there is no augmenting path for it.

- **only if:** Augmenting path means there is a larger matching
- **if:** Take a matching $M', |M'| > |M|$, and graph H with edges $M \triangle M'$
 - $M \triangle M' = (M \cup M') \setminus (M \cap M')$
 - H has max degree ≤ 2
 - The connected components of H are alternating paths and even cycles
 - H has more edges from M', so has a path component starting and ending with edges from M': augmenting for M.
High-Level Algorithm

• $M = \emptyset$

• While \exists an augmenting path P for M
 • Set $M = M \triangle P$

• Correct by Theorem.

• At most $\frac{n}{2}$ iterations, since each iteration adds an edge to M

• How do we search for an augmenting path?
 • Will show a $O(n + m)$ time algorithm, for $O(n^2 + nm)$ total time
Finding Augmenting Paths

- Idea: construct a directed graph $G_M = (V, E_M)$
- alternating paths in $G \leftrightarrow$ directed paths in G_M
 - Direct edges in M from right to left
 - Direct edges not in M from left to right
 - Any path in G_M must alternate edges in and outside M
 - Use BFS to search for a path in G_M from an exposed vertex on the left to an exposed vertex on the right.
König’s Theorem

• Vertex Cover: a set C of edges of $G = (V, E)$, so that for any edge $(a, b) \in E$, $a \in C$ or $b \in C$ (or both)

Theorem. In any bipartite graph, the size of the minimum cardinality vertex cover equals the size of the maximum cardinality matching.

• **Easy:** for any v.c. C and matching M, $|M| \leq |C|
 • Edges in M are disjoint, so no vertex in C can cover more than one of them
 • True even for non-bipartite graphs.

• **Harder:** for the max matching M, there exists a v.c. C s.t. $|C| = |M|
 • This part fails for some non-bipartite graphs.
Proof of Harder Direction

• $M = \text{max matching (no augmenting path)}$
• $U = \text{exposed vertices}$; $L = \text{vertices reachable in } G_M \text{ from } U \cap A$
• $C = (A \setminus L) \cup (B \cap L)$ is a vertex cover of size $|C| = |M|$

• No edges (a, b) with $a \in A \cap L$ and $b \in B \setminus L$
 • $(a, b) \notin M$: if a is reachable from U, then so is b
 • $(a, b) \in M$: $a \notin U$, and only incoming edge is $a \leftarrow b$, so a is reachable from U only if b is

$L = \{d, e, 4\}$
$C = \{a, b, c, 4\}$
Proof, continued

- $M = \text{max matching (no augmenting path)}$
- $U = \text{exposed vertices; } L = \text{vertices reachable in } G_M \text{ from } U \cap A$
- $C = (A \setminus L) \cup (B \cap L)$ is a vertex cover of size $|C| = |M|$
 - Every vertex in C touches exactly one edge in M
 - $A \setminus L \subseteq A \setminus U$ so all vertices in $A \setminus L$ are matched
 - All vertices in $B \cap L$ are matched, otherwise there is an augmenting path.
 - If $(a, b) \in M$, and $b \in B \cap L$, then $a \notin A \setminus L$ (if b is reachable from U, so is a)

$L = \{d, e, 4\}$
$C = \{a, b, c, 4\}$