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Matchings in graphs

* A matchingin agraph G = (V,E) is a subset M € E of edges so that

no two edges in M share an endpoint.

 Maximum cardinality matching: given input graph G, find a matching
M of maximum size

: v,
* Perfect matching: size |2—|, i.e., all edges are matched

* Solvable in polynomial time
o

-2 Computer Science
& UNIVERSITY OF TORONTO




BI p a rtlte G ra p h S Algorithm for general graphs is

a deep result of Jack Edmonds.

* We will focus on max cardinality matching in bipartite graphs.
* Bipartite graph: G = (V, E) so that we can partition V into disjoint
sets A and B, and all edges in E have one endpointin A andonin B

* We can check if G is bipartite in time O(n + m)
e |fitis, we can also find A and B in this time

* Fact: a graph is bipartite if and only if it does not have an odd cycle
* only if : any path alternates A and B and can only come back to the starting

node after an even numbers of hops.
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Bipartite Matching

O exposed

— matching

o .
Computer Science
&2 UNIVERSITY OF TORONTO




Finding the Maximum Matching

* Greedy (keep adding edges while you can) does not work

o o

* Do you know a polynomial time algorithm to find the max matching?

e Compute a max flow
* We will see a more combinatorial algorithm
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Augmenting Paths

* For a bipartite graph ¢ and a matching M, a path P is alternating if
edges in P alternate between being in M and being outside of M.

* An alternating path is augmenting if it starts and ends in unmatched
vertices.

a 1 a 1
b 2 b 2
C 3 C 3

2>b->3->c
is augmenting

1->a->2->b->3->cC
is alternating

Edgein M
Edgein P\ M
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Augmenting Paths

* An alternating path is augmenting if it starts and ends in unmatched
vertices.

* Let P = augmenting path.Set M' =M AP =(MUP)\ (M nP).
« M'is a matchingand |[M'| = M| + 1

First and last vertex in P unmatched,

1 and others just switch which ones

a 1 a
they are matched to.
b 2 b 2 One more non-matching edge in P
than matching edges: size of
c O 3 c O 3 matching increases by 1.

2->b->3->c Flip which edges are in _
is augmenting M along P. — Edgein M
—— EdgeinP\ M
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Characterizing Max Matchings

Theorem. A matching M is of maximum cardinality if and only if there is
no augmenting path for it.

* only if: Augmenting path means there is a larger matching
* if: Take a matching M', |[M'| > |M|, and graph H with edges M A M’

e MAM =(MUM)\(MnNM"
* H has max degree < 2

a O O 1 a O O 1 « The connected components of H are
. , ) , alternating paths and even cycles
- 02, H has more edges from M’, so has a path
c 3 c O 3 component starting and ending with
d O 4 q (()\O . edgesfrom M': augmenting for M.
e O O 5 e O O5 Edge in M

Edge in M’




High-Level Algorithm

.M:@

* While 3 an augmenting path P for M
e SetM =MAP

* Correct by Theorem.
* At most % iterations, since each iteration adds an edge to M

* How do we search for an augmenting path?
* Will show a O(n + m) time algorithm, for O(n? + nm) total time
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Finding Augmenting Paths

* |dea: construct a directed graph G,; = (V,Ey)
* alternating paths in G <--> directed paths in G,

* Direct edges in M from right to left
a 1
* Direct edges not in M from left to right

b 2 . . .
* Any path in G, must alternate edges in and outside M

3
4 . * Use BFS to search for a path in G, from an exposed
e O——0 5 vertex on the left to an exposed vertex on the right.
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Konig’s Theorem

* Vertex Cover: a set C of vertices of ¢ = (V, E), so that for any edge
(a,b) € E,a € Corb € C (or both)

Theorem. In any bipartite graph, the size of the minimum cardinality
vertex cover equals the size of the maximum cardinality matching.

* Easy: for any v.c. C and matching M, |[M| < |C|
* Edges in M are disjoint, so no vertex in C can cover more than one of them
* True even for non-bipartite graphs.

 Harder: for the max matching M, there exists a v.c. C s.t. |C| = |M|
* This part fails for some non-bipartite graphs.
i‘ ’j . vertex cover

——— matching edge
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Proof of Harder Direction

e M = max matching (no augmenting path)

* U = exposed vertices; L = vertices reachable in G, fromU N A
«C=(A\L)U (BnNL)isavertex cover of size |[C| = |M|

; ' ¢ Noedges (a,b)witha€ ANnLandb € B\ L

* (a,b) & M: if ais reachable from U, then sois b

* (a,b) € M:a & U, and only incoming edgeisa < b, so a is
reachable from U only if b is

@® exposed

© invertex cover



Proof, continued

e M = max matching (no augmenting path)
* U = exposed vertices; L = vertices reachable in G, fromU N A

«C=(A\L)U (BnNL)isavertex cover of size |[C| = |M|

a 1« Every vertex in C touches exactly one edge in M
b 2 * A\ LS A\ Usoallverticesin A \ L are matched
C 3

e All verticesin B N L are matched, otherwise there is an
augmenting path.

e If (a,b) e M,andb€eBnNL,thenag& A\L(ifbis
reachable from U, so is a).

e
C ={a,b,c, 4}
@
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Min-Cost Perfect Matching

* Input: a bipartite graph G = (A U B, E) which has a perfect matching
(matching of size %), and costs ¢ € RE

* Qutput: a perfect matching M that minimizes )¢y Ce-

* We can assume that G is the complete bipartite graph, i.e., there is an
edge (a,b) foreacha € A, b € B.

* Setc(e) =ofore ¢ E
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LP Relaxation

] value of the LP
e Convert into an IP, and relax to an LP < value of the IP

= min cost of a perfect matching

min Z CabXab min Z Ca,pXa,b
a€A,beB a€A,beB
s.t. s.t.

Zxa'b=1 VaeA Zxa'b=1 VaeA
Each vertex bes beB
covered by Z Xqp =1 VbEB Z Xqp =1 VbEB
exactly one acA acA

matching Xqap €{0,1} Va € A,b €B Xqp =0 Va€ADbEB

Xep =1 (a,b) €M Xqap < 1implied by

the other constraints.
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The feasible region of the LP is a

Th e I_ P | S | nteg ra | polytope whose vertices are indicator

vectors of perfect matchings.

Theorem. The value of the LP relaxation is equal to the minimum cost

of a perfect matching. Moreover, a min cost matching is computable in
time 0(n3).

* Identify LP solutions x with coordinates in {0,1} with matchings
* Xabp = 1o (a,b) eEM

* Theorem says that for any cost vector c, there is a {0,1}-solution x
(equivalently a matching M) which is optimal for the LP.
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Matrix form

2
e Can write LP as min{c'x: Hx = 1,x = 0} for nx (2) matrix H:

(a,b)
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The Dual

* The primal and dual LPs:

min Z CabXab max Z Vu
a€A,bEB Uuc€AUB
s.t. st.  Yatyp<cqp Va€EADERB
z .X'a,b =1 Va€eA
beb  Complementary Slackness: feasible solutions
zxa,b=1 vb €B x and y are optimal iff
acA
Xqp =0 Va€AbeB *Xagp > 0=y, +Yp =Cap
* Goal: compute feasible y and a p.m. M, s.t.

M S Ey = {(a,b):yq+Yp = Cap}
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High-Level Algorithm

e Startwithy =0,M =0

* While M is not perfect

* If there is an augmenting path P in G,, = (A U B, Ey)
e M=MAP
* Else, modify y while maintaining M < E|,

* Will make sure that after each O (n) modifications to y, an augmenting
path exists (unless M is perfect).

* On termination, by compl. slackness, M is a min cost perfect matching.
* |.e., the LP solution x corresponding to M and y satisfy CS.
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Moditying y

* G,y = orientation of G,, associated with M
* j.e. directed graph with edges in M directed to the left, and the others right

* U = exposed vertices; L = vertices reachable in G,, ), fromU N A
e Assume no augmenting path,soLNUNB =@

* Kénig’s Thm: No edges of G, between AN Land B \ L
°6=min{ca,b — Y, —Yp:a€EANL,D EB\L}> 0

 Modification: y

Vo< Vg T+ 0 VaeANL 45 Vg
*YVp<Yp—0 VbEBNL +8 Ve

exposed

Va V1

Yb

&
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Moditying y

. 5=min{ca,b—ya—yb:aEAnL,b EB\L}>0
* Modification:

* Yo <YV TO Va€eEANL

* YV, <YyYp,—0 VbEBNL a, b that
achieves &

* y is still feasible (by definition of 0)

e M C Ey after modification
e if(a,b)EMandb€eBNL,thena€ANL

* All reachable vertices remain reachable in new G,, y

* For a, b achieving 8, b becomes reachable from a
. b E L +6 Yda

@® exposed

©  vertex cover



Running time

* After each modification to y, a new vertex in B enters L

o After < % modifications, some exposed vertex in B enters L

* |.e., there is a an augmenting path

e So after each < % modifications to y, M grows by 1 edge

» Total number of iterations is O(n?), each taking 0(n?) time
* Running time 0(n*)

* Better data structures improve this to 0(n?)
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