Matchings: Max Cardinality and Min Cost

CSC 473 Advanced Algorithms
Matchings in graphs

- A matching in a graph $G = (V, E)$ is a subset $M \subseteq E$ of edges so that no two edges in M share an endpoint.

- Maximum cardinality matching: given input graph G, find a matching M of maximum size
 - Perfect matching: size $\frac{|V|}{2}$, i.e., all edges are matched
 - Solvable in polynomial time
Bipartite Graphs

• We will focus on max cardinality matching in *bipartite graphs*.

• **Bipartite graph**: $G = (V, E)$ so that we can partition V into disjoint sets A and B, and all edges in E have one endpoint in A and on in B

 • We can check if G is bipartite in time $O(n + m)$

 • If it is, we can also find A and B in this time

• **Fact**: a graph is bipartite if and only if it does *not* have an odd cycle

 • *only if*: any path alternates A and B and can only come back to the starting node after an even numbers of hops.

Algorithm for general graphs is a deep result of Jack Edmonds.
Bipartite Matching
Finding the Maximum Matching

- Greedy (keep adding edges while you can) does not work

- Do you know a polynomial time algorithm to find the max matching?
 - Compute a max flow
 - We will see a more combinatorial algorithm
Augmenting Paths

• For a bipartite graph G and a matching M, a path P is alternating if edges in P alternate between being in M and being outside of M.

• An alternating path is augmenting if it starts and ends in unmatched vertices.

\[
\begin{align*}
1 \rightarrow a \rightarrow 2 & \rightarrow b \rightarrow 3 \rightarrow c \\
2 \rightarrow b \rightarrow 3 & \rightarrow c
\end{align*}
\]

is alternating

is augmenting
Augmenting Paths

• An alternating path is **augmenting** if it starts and ends in unmatched vertices.

• Let $P = \text{augmenting path}$. Set $M' = M \triangle P = (M \cup P) \setminus (M \cap P)$.

• M' is a matching and $|M'| = |M| + 1$

2 -> b -> 3 -> c is augmenting

First and last vertex in P unmatched, and others just switch which ones they are matched to.

One more non-matching edge in P than matching edges: size of matching increases by 1.
Characterizing Max Matchings

Theorem. A matching M is of maximum cardinality if and only if there is no augmenting path for it.

- **only if:** Augmenting path means there is a larger matching
- **if:** Take a matching M', $|M'| > |M|$, and graph H with edges $M \triangle M'$
 - $M \triangle M' = (M \cup M') \setminus (M \cap M')$
 - H has max degree ≤ 2
 - The connected components of H are alternating paths and even cycles
 - H has more edges from M', so has a path component starting and ending with edges from M': augmenting for M.

![Diagram showing a graph with edges indicating maximum matching and augmenting paths](image-url)
High-Level Algorithm

• $M = \emptyset$

• While \exists an augmenting path P for M
 • Set $M = M \Delta P$

• Correct by Theorem.

• At most $\frac{n}{2}$ iterations, since each iteration adds an edge to M

• How do we search for an augmenting path?
 • Will show a $O(n + m)$ time algorithm, for $O(n^2 + nm)$ total time
Finding Augmenting Paths

• Idea: construct a directed graph $G_M = (V, E_M)$
• alternating paths in $G <-->$ directed paths in G_M

- Direct edges in M from right to left
- Direct edges not in M from left to right
- Any path in G_M must alternate edges in and outside M
- Use BFS to search for a path in G_M from an exposed vertex on the left to an exposed vertex on the right.
König’s Theorem

• Vertex Cover: a set C of vertices of $G = (V, E)$, so that for any edge $(a, b) \in E$, $a \in C$ or $b \in C$ (or both)

Theorem. In any bipartite graph, the size of the minimum cardinality vertex cover equals the size of the maximum cardinality matching.

• **Easy**: for any v.c. C and matching M, $|M| \leq |C|
 • Edges in M are disjoint, so no vertex in C can cover more than one of them
 • True even for non-bipartite graphs.

• **Harder**: for the max matching M, there exists a v.c. C s.t. $|C| = |M|
 • This part fails for some non-bipartite graphs.
Proof of Harder Direction

- $M = \text{max matching (no augmenting path)}$
- $U = \text{exposed vertices; } L = \text{vertices reachable in } G_M \text{ from } U \cap A$
- $C = (A \setminus L) \cup (B \cap L)$ is a vertex cover of size $|C| = |M|$

- No edges (a, b) with $a \in A \cap L$ and $b \in B \setminus L$
 - $(a, b) \notin M$: if a is reachable from U, then so is b
 - $(a, b) \in M: a \notin U$, and only incoming edge is $a \leftarrow b$, so a is reachable from U only if b is

$L = \{d, e, 4\}$
$C = \{a, b, c, 4\}$

* exposed
* in vertex cover
Proof, continued

- $M = \text{max matching (no augmenting path)}$
- $U = \text{exposed vertices; } L = \text{vertices reachable in } G_M \text{ from } U \cap A$
- $C = (A \setminus L) \cup (B \cap L)$ is a vertex cover of size $|C| = |M|$

- Every vertex in C touches exactly one edge in M

 - $A \setminus L \subseteq A \setminus U$ so all vertices in $A \setminus L$ are matched

 - All vertices in $B \cap L$ are matched, otherwise there is an augmenting path.

 - If $(a, b) \in M$, and $b \in B \cap L$, then $a \notin A \setminus L$ (if b is reachable from U, so is a).

$L = \{d, e, 4\}$
$C = \{a, b, c, 4\}$
Min-Cost Perfect Matching

- **Input**: a bipartite graph \(G = (A \cup B, E) \) which has a perfect matching (matching of size \(\frac{n}{2} \)), and costs \(c \in \mathbb{R}^E \)
- **Output**: a perfect matching \(M \) that minimizes \(\sum_{e \in M} c_e \).

- We can assume that \(G \) is the complete bipartite graph, i.e., there is an edge \((a, b)\) for each \(a \in A, b \in B \).
 - Set \(c(e) = \infty \) for \(e \notin E \)
LP Relaxation

• Convert into an IP, and relax to an LP

\[
\min \sum_{a \in A, b \in B} \ c_{a,b}x_{a,b} \\
\text{s.t.} \\
\sum_{b \in B} x_{a,b} = 1 \ \forall a \in A \\
\sum_{a \in A} x_{a,b} = 1 \ \forall b \in B \\
x_{a,b} \in \{0,1\} \ \forall a \in A, b \in B
\]

\[
x_{a,b} = 1 \iff (a, b) \in M
\]
The LP is integral

Theorem. The value of the LP relaxation is equal to the minimum cost of a perfect matching. Moreover, a min cost matching is computable in time $O(n^3)$.

- Identify LP solutions x with coordinates in $\{0,1\}$ with matchings
 - $x_{a,b} = 1 \iff (a,b) \in M$
- Theorem says that for any cost vector c, there is a $\{0,1\}$-solution x (equivalently a matching M) which is optimal for the LP.

The feasible region of the LP is a polytope whose vertices are indicator vectors of perfect matchings.
Matrix form

• Can write LP as \(\min \{ c^\top x : Hx = 1, x \geq 0 \} \) for \(n \times \left(\frac{n}{2} \right)^2 \) matrix \(H \):
The Dual

• The primal and dual LPs:

\[
\begin{align*}
\text{min} & \quad \sum_{a \in A, b \in B} c_{a,b} x_{a,b} \\
\text{s.t.} & \quad \sum_{b \in B} x_{a,b} = 1 \quad \forall a \in A \\
& \quad \sum_{a \in A} x_{a,b} = 1 \quad \forall b \in B \\
& \quad x_{a,b} \geq 0 \quad \forall a \in A, b \in B
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \sum_{u \in A \cup B} y_u \\
\text{s.t.} & \quad y_a + y_b \leq c_{a,b} \quad \forall a \in A, b \in B
\end{align*}
\]

• Complementary Slackness: feasible solutions \(x\) and \(y\) are optimal iff
 \(x_{a,b} > 0 \Rightarrow y_a + y_b = c_{a,b}\)

• Goal: compute feasible \(y\) and a p.m. \(M\), s.t.
 \(M \subseteq E_y = \{(a, b) : y_a + y_b = c_{a,b}\}\)
High-Level Algorithm

• Start with \(y = 0, M = \emptyset \)
• While \(M \) is not perfect
 • If there is an augmenting path \(P \) in \(G_y = (A \cup B, E_y) \)
 • \(M = M \triangle P \)
 • Else, modify \(y \) while maintaining \(M \subseteq E_y \)

• Will make sure that after each \(O(n) \) modifications to \(y \), an augmenting path exists (unless \(M \) is perfect).
• On termination, by compl. slackness, \(M \) is a min cost perfect matching.
 • I.e., the LP solution \(x \) corresponding to \(M \) and \(y \) satisfy CS.
Modifying y

- $G_{y,M} = \text{orientation of } G_y \text{ associated with } M$
 - i.e. directed graph with edges in M directed to the left, and the others right
- $U = \text{exposed vertices}; L = \text{vertices reachable in } G_{y,M} \text{ from } U \cap A$
- Assume no augmenting path, so $L \cap U \cap B = \emptyset$
- König’s Thm: No edges of G_y between $A \cap L$ and $B \setminus L$
- $\delta = \min\{c_{a,b} - y_a - y_b : a \in A \cap L, b \in B \setminus L\} > 0$
- Modification:
 - $y_a \leftarrow y_a + \delta \ \forall a \in A \cap L$
 - $y_b \leftarrow y_b - \delta \ \forall b \in B \cap L$
Modifying y

• $\delta = \min\{c_{a,b} - y_a - y_b : a \in A \cap L, b \in B \setminus L\} > 0$

• Modification:
 • $y_a \leftarrow y_a + \delta \ \forall a \in A \cap L$
 • $y_b \leftarrow y_b - \delta \ \forall b \in B \cap L$

• y is still feasible (by definition of δ)

• $M \subseteq E_y$ after modification
 • if $(a, b) \in M$ and $b \in B \cap L$, then $a \in A \cap L$

• All reachable vertices remain reachable in new $G_{y,M}$

• For a, b achieving δ, b becomes reachable from a
 • $b \in L$

[Diagram showing vertex cover and exposed vertices]
Running time

• After each modification to y, a new vertex in B enters L
• After $\leq \frac{n}{2}$ modifications, some exposed vertex in B enters L
 • I.e., there is a augmenting path
• So after each $\leq \frac{n}{2}$ modifications to y, M grows by 1 edge
• Total number of iterations is $O(n^2)$, each taking $O(n^2)$ time
 • Running time $O(n^4)$
• Better data structures improve this to $O(n^3)$