Matchings: Max Cardinality and Min Cost

CSC 473 Advanced Algorithms

Matchings in graphs

- A matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ of edges so that no two edges in M share an endpoint.

- Maximum cardinality matching: given input graph G, find a matching M of maximum size
- Perfect matching: size $\frac{|V|}{2}$, i.e., all edges are matched
- Solvable in polynomial time

Bipartite Graphs

- We will focus on max cardinality matching in bipartite graphs.
- Bipartite graph: $G=(V, E)$ so that we can partition V into disjoint sets A and B, and all edges in E have one endpoint in A and on in B
- We can check if G is bipartite in time $O(n+m)$
- If it is, we can also find A and B in this time
- Fact: a graph is bipartite if and only if it does not have an odd cycle
- only if : any path alternates A and B and can only come back to the starting node after an even numbers of hops.

Bipartite Matching

exposed
— matching

Computer Science
UNIVERSITY OF TORONTO

Finding the Maximum Matching

- Greedy (keep adding edges while you can) does not work

- Do you know a polynomial time algorithm to find the max matching?
- Compute a max flow
- We will see a more combinatorial algorithm

Augmenting Paths

- For a bipartite graph G and a matching M, a path P is alternating if edges in P alternate between being in M and being outside of M.
- An alternating path is augmenting if it starts and ends in unmatched vertices.

$$
\begin{gathered}
1->a \operatorname{l->} 2->b->3->c \\
\text { is alternating }
\end{gathered}
$$

2 -> b -> 3 -> c
is augmenting

Augmenting Paths

- An alternating path is augmenting if it starts and ends in unmatched vertices.
- Let $P=$ augmenting path. Set $M^{\prime}=M \Delta P=(M \cup P) \backslash(M \cap P)$.
- M^{\prime} is a matching and $\left|M^{\prime}\right|=|M|+1$

First and last vertex in P unmatched,
 and others just switch which ones they are matched to.

One more non-matching edge in P than matching edges: size of matching increases by 1.

$$
2->b->3 \text {-> c }
$$

is augmenting
Flip which edges are in M along P.

[^0]Computer Science
UNIVERSITY OF TORONTO

Characterizing Max Matchings

Theorem. A matching M is of maximum cardinality if and only if there is no augmenting path for it.

- only if: Augmenting path means there is a larger matching
- if: Take a matching $M^{\prime},\left|M^{\prime}\right|>|M|$, and graph H with edges $M \Delta M^{\prime}$
- $M \Delta M^{\prime}=\left(M \cup M^{\prime}\right) \backslash\left(M \cap M^{\prime}\right)$
- H has max degree ≤ 2

Computer Science

- The connected components of H are alternating paths and even cycles
- H has more edges from M^{\prime}, so has a path component starting and ending with edges from M^{\prime} : augmenting for M.

High-Level Algorithm

- $M=\varnothing$
- While \exists an augmenting path P for M
- Set $M=M \Delta P$
- Correct by Theorem.
- At most $\frac{n}{2}$ iterations, since each iteration adds an edge to M
- How do we search for an augmenting path?
- Will show a $O(n+m)$ time algorithm, for $O\left(n^{2}+n m\right)$ total time

Finding Augmenting Paths

- Idea: construct a directed graph $G_{M}=\left(V, E_{M}\right)$
- alternating paths in $G<-->$ directed paths in G_{M}
- Direct edges in M from right to left

- Direct edges not in M from left to right
- Any path in G_{M} must alternate edges in and outside M
- Use BFS to search for a path in G_{M} from an exposed vertex on the left to an exposed vertex on the right.

König's Theorem

- Vertex Cover: a set C of vertices of $G=(\mathrm{V}, \mathrm{E})$, so that for any edge (a, b) $\in E, a \in C$ or $b \in C$ (or both)
Theorem. In any bipartite graph, the size of the minimum cardinality vertex cover equals the size of the maximum cardinality matching.
- Easy: for any v.c. C and matching $M,|M| \leq|C|$
- Edges in M are disjoint, so no vertex in C can cover more than one of them
- True even for non-bipartite graphs.
- $\underline{\text { Harder: }}$ for the max matching M, there exists a v.c. C s.t. $|C|=|M|$
- This part fails for some non-bipartite graphs.

__ matching edge

Proof of Harder Direction

- $M=$ max matching (no augmenting path)
- $U=$ exposed vertices; $L=$ vertices reachable in G_{M} from $U \cap A$
- $C=(A \backslash L) \cup(B \cap L)$ is a vertex cover of size $|\mathrm{C}|=|M|$

$L=\{d, e, 4\}$
$C=\{a, b, c, 4\}$
- No edges (a, b) with $a \in A \cap L$ and $b \in B \backslash L$
- $(a, b) \notin M$: if a is reachable from U, then so is b
- $(a, b) \in M$: $a \notin U$, and only incoming edge is $a \leftarrow b$, so a is reachable from U only if b is
- exposed

O in vertex cover
Computer Science
UNIVERSITY OF TORONTO

Proof, continued

- $M=$ max matching (no augmenting path)
- $U=$ exposed vertices; $L=$ vertices reachable in G_{M} from $U \cap A$
- $C=(A \backslash L) \cup(B \cap L)$ is a vertex cover of size $|\mathrm{C}|=|M|$

$L=\{d, e, 4\}$
$C=\{a, b, c, 4\}$
- Every vertex in C touches exactly one edge in M
- $A \backslash L \subseteq A \backslash U$ so all vertices in $A \backslash L$ are matched
- All vertices in $B \cap L$ are matched, otherwise there is an augmenting path.
- If $(a, b) \in M$, and $b \in B \cap L$, then $a \notin A \backslash L$ (if b is reachable from U, so is a).

Min-Cost Perfect Matching

- Input: a bipartite graph $G=(A \cup B, E)$ which has a perfect matching (matching of size $\frac{n}{2}$), and costs $c \in \mathbb{R}^{E}$
- Output: a perfect matching M that minimizes $\sum_{e \in M} c_{e}$.
- We can assume that G is the complete bipartite graph, i.e., there is an edge (a, b) for each $a \in A, b \in B$.
- Set $c(e)=\infty$ for $e \notin E$

LP Relaxation

- Convert into an IP, and relax to an LP

```
value of the LP
svalue of the IP
    = min cost of a perfect matching
```


The LP is integral

Theorem. The value of the LP relaxation is equal to the minimum cost of a perfect matching. Moreover, a min cost matching is computable in time $O\left(n^{3}\right)$.

- Identify LP solutions x with coordinates in $\{0,1\}$ with matchings
- $x_{a, b}=1 \Leftrightarrow(a, b) \in M$
- Theorem says that for any cost vector c, there is a $\{0,1\}$-solution x (equivalently a matching M) which is optimal for the LP.

Computer Science

Matrix form

- Can write LP as $\min \left\{c^{\top} x: H x=1, x \geq 0\right\}$ for $n \times\left(\frac{n}{2}\right)^{2}$ matrix H :

Computer Science
UNIVERSITY OF TORONTO

The Dual

- The primal and dual LPs:

$$
\begin{gathered}
\min \sum_{a \in A, b \in B} c_{a, b} x_{a, b} \\
\text { s.t. } \\
\sum_{b \in B} x_{a, b}=1 \quad \forall a \in A \\
\sum_{a \in A} x_{a, b}=1 \quad \forall b \in B \\
x_{a, b} \geq 0 \quad \forall a \in A, b \in B
\end{gathered}
$$

$\min \sum_{a \in A, b \in B} c_{a, b} x_{a, b}$
s.t. $\sum_{b \in B} x_{a, b}=1 \quad \forall a \in A$
$\sum_{a \in A} x_{a, b}=1 \quad \forall b \in B$
$x_{a, b} \geq 0 \quad \forall a \in A, b \in B$

$$
\begin{array}{|c}
\hline \\
\max \sum_{u \in A \cup B} y_{u} \\
\text { s.t. } \\
y_{a}+y_{b} \leq c_{a, b} \forall a \in A, b \in B \\
\hline
\end{array}
$$

- Complementary Slackness: feasible solutions x and y are optimal iff

$$
\text { - } x_{a, b}>0 \Rightarrow y_{a}+y_{b}=c_{a, b}
$$

- Goal: compute feasible y and a p.m. M, s.t. $M \subseteq E_{y}=\left\{(a, b): y_{a}+y_{b}=c_{a, b}\right\}$

High-Level Algorithm

- Start with $y=0, M=\varnothing$
- While M is not perfect
- If there is an augmenting path P in $G_{y}=\left(A \cup B, E_{y}\right)$
- $M=M \Delta P$
- Else, modify y while maintaining $M \subseteq E_{y}$
- Will make sure that after each $O(n)$ modifications to y, an augmenting path exists (unless M is perfect).
- On termination, by compl. slackness, M is a min cost perfect matching.
- I.e., the LP solution x corresponding to M and y satisfy CS.

Modifying y

- $G_{y, M}=$ orientation of G_{y} associated with M
- i.e. directed graph with edges in M directed to the left, and the others right
- $U=$ exposed vertices; $L=$ vertices reachable in $G_{y, M}$ from $U \cap A$
- Assume no augmenting path, so $L \cap U \cap B=\varnothing$
- König's Thm: No edges of G_{y} between $A \cap L$ and $B \backslash L$
- $\delta=\min \left\{c_{a, b}-y_{a}-y_{b}: a \in A \cap L, b \in B \backslash L\right\}>0$
- Modification:
- $y_{a} \leftarrow y_{a}+\delta \quad \forall a \in A \cap L$
- $y_{b} \leftarrow y_{b}-\delta \quad \forall b \in B \cap L$

Modifying y

- $\delta=\min \left\{c_{a, b}-y_{a}-y_{b}: a \in A \cap L, b \in B \backslash L\right\}>0$
- Modification:
- $y_{a} \leftarrow y_{a}+\delta \quad \forall a \in A \cap L$
- $y_{b} \leftarrow y_{b}-\delta \forall b \in B \cap L$
- y is still feasible (by definition of δ)
- $M \subseteq E_{y}$ after modification
- if $(a, b) \in M$ and $b \in B \cap L$, then $a \in A \cap L$
- All reachable vertices remain reachable in new $G_{y, M}$
- For a, b achieving δ, b becomes reachable from a
- $b \in L$

Running time

- After each modification to y, a new vertex in B enters L
- After $\leq \frac{n}{2}$ modifications, some exposed vertex in B enters L
- I.e., there is a an augmenting path
- So after each $\leq \frac{n}{2}$ modifications to y, M grows by 1 edge
- Total number of iterations is $O\left(n^{2}\right)$, each taking $O\left(n^{2}\right)$ time
- Running time $O\left(n^{4}\right)$
- Better data structures improve this to $O\left(n^{3}\right)$

[^0]: ——— Edge in M
 —— Edge in $P \backslash M$

