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Matchings in graphs

• A matching in a graph ! = #, % is a subset & ⊆ % of edges so that 
no two edges in & share an endpoint.

• Maximum cardinality matching: given input graph !, find a matching 
& of maximum size
• Perfect matching: size () , i.e., all edges are matched
• Solvable in polynomial time



 
 
 
 
 
 
 
 
 
 
 
 
  

Bipartite Graphs

• We will focus on max cardinality matching in bipartite graphs.
• Bipartite graph: ! = #, % so that we can partition # into disjoint 

sets & and ', and all edges in % have one endpoint in & and on in '
• We can check if ! is bipartite in time ((* +,)
• If it is, we can also find & and ' in this time

• Fact: a graph is bipartite if and only if it does not have an odd cycle
• only if : any path alternates & and ' and can only come back to the starting 

node after an even numbers of hops.

Algorithm for general graphs is 
a deep result of Jack Edmonds.

Not 
bipartiteBipartite



 
 
 
 
 
 
 
 
 
 
 
 
  

Bipartite Matching



 
 
 
 
 
 
 
 
 
 
 
 
  

Finding the Maximum Matching

• Greedy (keep adding edges while you can) does not work

• Do you know a polynomial time algorithm to find the max matching?
• Compute a max flow
• We will see a more combinatorial algorithm
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Augmenting Paths

• For a bipartite graph ! and a matching ", a path # is alternating if 
edges in # alternate between being in " and being outside of ".
• An alternating path is augmenting if it starts and ends in unmatched 

vertices.
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1 -> a -> 2 -> b -> 3 -> c
is alternating

2 -> b -> 3 -> c
is augmenting Edge in "

Edge in # ∖ "



 
 
 
 
 
 
 
 
 
 
 
 
  

Augmenting Paths

• An alternating path is augmenting if it starts and ends in unmatched 
vertices. 
• Let ! = augmenting path. Set #$ = # △ ! = (# ∪ !) ∖ # ∩ ! . 
• #′ is a matching and #$ = # + 1
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2 -> b -> 3 -> c
is augmenting
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Flip which edges are in 
# along !.

First and last vertex in ! unmatched, 
and others just switch which ones 

they are matched to.

One more non-matching edge in !
than matching edges: size of 

matching increases by 1.

Edge in #
Edge in ! ∖ #



 
 
 
 
 
 
 
 
 
 
 
 
  

Characterizing Max Matchings

Theorem. A matching ! is of maximum cardinality if and only if there is 
no augmenting path for it.
• only if: Augmenting path means there is a larger matching
• if: Take a matching !′, !# > ! , and graph % with edges ! △!#
• ! △!# = ! ∪M# ∖ (! ∩!#)

• % has max degree ≤ 2
• The connected components of % are 

alternating paths and even cycles
• % has more edges from !′, so has a path 

component starting and ending with 
edges from !′: augmenting for !.
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High-Level Algorithm

• ! = ∅
• While ∃ an augmenting path % for !
• Set ! = ! △ %

• Correct by Theorem.
• At most '( iterations, since each iteration adds an edge to !
• How do we search for an augmenting path?
• Will show a )(+ +-) time algorithm, for )(+( + +-) total time



 
 
 
 
 
 
 
 
 
 
 
 
  

Finding Augmenting Paths

• Idea: construct a directed graph !" = (%, '")
• alternating paths in ! <--> directed paths in !"

• Direct edges in ) from right to left
• Direct edges not in ) from left to right
• Any path in !" must alternate edges in and outside )
• Use BFS to search for a path in !" from an exposed 

vertex on the left to an exposed vertex on the right.
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König’s Theorem

• Vertex Cover: a set ! of vertices of " = (V, E), so that for any edge 
), * ∈ ,, ) ∈ ! or * ∈ ! (or both)

Theorem. In any bipartite graph, the size of the minimum cardinality 
vertex cover equals the size of the maximum cardinality matching.
• Easy: for any v.c. ! and matching -, - ≤ |!|
• Edges in - are disjoint, so no vertex in ! can cover more than one of them
• True even for non-bipartite graphs.

• Harder: for the max matching -, there exists a v.c. ! s.t. ! = |-|
• This part fails for some non-bipartite graphs.

vertex cover

matching edge



 
 
 
 
 
 
 
 
 
 
 
 
  

Proof of Harder Direction

• ! = max matching (no augmenting path)
• # = exposed vertices; $ = vertices reachable in %& from # ∩ (
• ) = ( ∖ $ ∪ (- ∩ $) is a vertex cover of size C = |!|

• No edges 1, 3 with 1 ∈ ( ∩ $ and 3 ∈ - ∖ $
• 1, 3 ∉ !: if 1 is reachable from #, then so is 3
• 1, 3 ∈ !: 1 ∉ #, and only incoming edge is 1 ← 3, so 1 is 

reachable from # only if 3 is

a
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c
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d 4
e

$ = {8, 9, 4}
) = {1, 3, <, 4}

5

exposed
in vertex cover



 
 
 
 
 
 
 
 
 
 
 
 
  

Proof, continued

• ! = max matching (no augmenting path)
• # = exposed vertices; $ = vertices reachable in %& from # ∩ (
• ) = ( ∖ $ ∪ (- ∩ $) is a vertex cover of size C = |!|

• Every vertex in ) touches exactly one edge in !
• ( ∖ $ ⊆ ( ∖ # so all vertices in ( ∖ $ are matched
• All vertices in - ∩ $ are matched, otherwise there is an 

augmenting path.
• If 2, 4 ∈ !, and 4 ∈ - ∩ $, then 2 ∉ ( ∖ $ (if 4 is 

reachable from #, so is 2).
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$ = {8, 9, 4}
) = {2, 4, <, 4}

exposed
in vertex cover



 
 
 
 
 
 
 
 
 
 
 
 
  

Min-Cost Perfect Matching

• Input: a bipartite graph ! = # ∪ %, ' which has a perfect matching 
(matching of size ()), and costs * ∈ ℝ-
• Output: a perfect matching . that minimizes ∑0∈1 *0.

• We can assume that ! is the complete bipartite graph, i.e., there is an 
edge 2, 3 for each 2 ∈ #, 3 ∈ %.
• Set * 4 = ∞ for 4 ∉ '



 
 
 
 
 
 
 
 
 
 
 
 
  

LP Relaxation

• Convert into an IP, and relax to an LP

min $
%∈',)∈*

+%,),%,)

s.t.

$
)∈*

,%,) = 1 ∀0 ∈ 1

$
%∈'

,%,) = 1 ∀2 ∈ 3

,%,) ∈ {0,1} ∀0 ∈ 1, 2 ∈ 3

,%,) = 1 ⇔ 0, 2 ∈ 8

Each vertex 
covered by 
exactly one 
matching 

edge

min $
%∈',)∈*

+%,),%,)

s.t.

$
)∈*

,%,) = 1 ∀0 ∈ 1

$
%∈'

,%,) = 1 ∀2 ∈ 3

,%,) ≥ 0 ∀0 ∈ 1, 2 ∈ 3

,%,) ≤ 1 implied by 
the other constraints.

value of the LP 
≤ value of the IP 

= min cost of a perfect matching



 
 
 
 
 
 
 
 
 
 
 
 
  

The LP is integral

Theorem. The value of the LP relaxation is equal to the minimum cost 
of a perfect matching. Moreover, a min cost matching is computable in 
time !(#$).

• Identify LP solutions & with coordinates in {0,1} with matchings
• &,,- = 1 ⇔ 0, 1 ∈ 3

• Theorem says that for any cost vector 4, there is a {0,1}-solution &
(equivalently a matching 3) which is optimal for the LP.

The feasible region of the LP is a 
polytope whose vertices are indicator 

vectors of perfect matchings.



 
 
 
 
 
 
 
 
 
 
 
 
  

Matrix form

• Can write LP as min{%⊺': )' = 1, ' ≥ 0} for 0× 2
3

3
matrix ):  

4×5

4

5

(7, 8)

7

8

1

1



 
 
 
 
 
 
 
 
 
 
 
 
  

The Dual

• The primal and dual LPs:

• Complementary Slackness: feasible solutions 
! and " are optimal iff
• !#,% > 0 ⇒ "# + "% = +#,%

• Goal: compute feasible " and a p.m. ,, s.t.
, ⊆ ./ = { 1, 2 : "# + "% = +#,%}

min 8
#∈:,%∈;

+#,%!#,%

s.t.

8
%∈;

!#,% = 1 ∀1 ∈ >

8
#∈:

!#,% = 1 ∀2 ∈ ?

!#,% ≥ 0 ∀1 ∈ >, 2 ∈ ?

max 8
C∈:∪;

"C
s.t. "# + "% ≤ +#,% ∀1 ∈ >, 2 ∈ ?



 
 
 
 
 
 
 
 
 
 
 
 
  

High-Level Algorithm

• Start with ! = 0, $ = ∅
• While $ is not perfect

• If there is an augmenting path & in '( = ) ∪ +, -(
• $ = $ △ &

• Else, modify ! while maintaining $ ⊆ -(

• Will make sure that after each 0(2) modifications to !, an augmenting 
path exists (unless $ is perfect).
• On termination, by compl. slackness, $ is a min cost perfect matching.

• I.e., the LP solution 4 corresponding to $ and ! satisfy CS.



 
 
 
 
 
 
 
 
 
 
 
 
  

Modifying !

• "#,% = orientation of "# associated with '
• i.e. directed graph with edges in ' directed to the left, and the others right

• ( = exposed vertices; ) = vertices reachable in "#,% from ( ∩ +
• Assume no augmenting path, so ) ∩ ( ∩ , = ∅
• König’s Thm: No edges of "# between + ∩ ) and , ∖ )
• / = min 34,5 − !4 − !5: 8 ∈ + ∩ ), : ∈ , ∖ ) > 0
• Modification:
• !4 ← !4 + / ∀8 ∈ + ∩ )
• !5 ← !5 − / ∀: ∈ , ∩ )

!4

!5

) = {A, B, 4}

!E
!F
!G

!H

!I

!J
!K

exposed
vertex cover

+/
+/

−/



 
 
 
 
 
 
 
 
 
 
 
 
  

Modifying !

• " = min '(,* − !( − !*: - ∈ / ∩ 1, 2 ∈ 3 ∖ 1 > 0
• Modification:

• !( ← !( + " ∀- ∈ / ∩ 1
• !* ← !* − " ∀2 ∈ 3 ∩ 1

• ! is still feasible (by definition of ")
• : ⊆ <= after modification 

• if -, 2 ∈ : and 2 ∈ 3 ∩ 1, then - ∈ / ∩ 1
• All reachable vertices remain reachable in new >=,?
• For -, 2 achieving ", 2 becomes reachable from -

• 2 ∈ 1

!(

!*

1 = {A, B, 4}

!E
!F
!G

!H

!I

!J
!K

exposed
vertex cover

+"
+"

−"

-, 2 that 
achieves "



 
 
 
 
 
 
 
 
 
 
 
 
  

Running time

• After each modification to !, a new vertex in " enters #
• After ≤ %

& modifications, some exposed vertex in " enters #
• I.e., there is a an augmenting path

• So after each ≤ %
& modifications to !, ' grows by 1 edge

• Total number of iterations is ((*&), each taking ( *& time
• Running time ((*+)

• Better data structures improve this to ((*-)


