
2. Examples

Linear programming is a wonderful tool. But in order to use it, one first
has to start suspecting that the considered computational problem might be
expressible by a linear program, and then one has to really express it that
way. In other words, one has to see linear programming “behind the scenes.”

One of the main goals of this book is to help the reader acquire skills in
this direction. We believe that this is best done by studying diverse examples
and by practice. In this chapter we present several basic cases from the wide
spectrum of problems amenable to linear programming methods, and we
demonstrate a few tricks for reformulating problems that do not look like
linear programs at first sight. Further examples are covered in Chapter 3,
and Chapter 8 includes more advanced applications.

Once we have a suitable linear programming formulation (a “model” in
the mathematical programming parlance), we can employ general algorithms.
From a programmer’s point of view this is very convenient, since it suffices to
input the appropriate objective function and constraints into general-purpose
software.

If efficiency is a concern, this need not be the end of the story. Many prob-
lems have special features, and sometimes specialized algorithms are known,
or can be constructed, that solve such problems substantially faster than
a general approach based on linear programming. For example, the study
of network flows, which we consider in Section 2.2, constitutes an extensive
subfield of theoretical computer science, and fairly efficient algorithms have
been developed. Computing a maximum flow via linear programming is thus
not the best approach for large-scale instances.

However, even for problems where linear programming doesn’t ultimately
yield the most efficient available algorithm, starting with a linear program-
ming formulation makes sense: for fast prototyping, case studies, and deciding
whether developing problem-specific software is worth the effort.

12 2. Examples

2.1 Optimized Diet: Wholesome and Cheap?

. . . and when Rabbit said, “Honey or condensed milk
with your bread?” he was so excited that he said,
“Both,” and then, so as not to seem greedy, he added,
“But don’t bother about the bread, please.”

A.A. Milne, Winnie the Pooh

The Office of Nutrition Inspection of the EU recently found out that dishes
served at the dining and beverage facility “Bullneck’s,” such as herring, hot
dogs, and house-style hamburgers do not comport with the new nutritional
regulations, and its report mentioned explicitly the lack of vitamins A and
C and dietary fiber. The owner and operator of the aforementioned facility
is attempting to rectify these shortcomings by augmenting the menu with
vegetable side dishes, which he intends to create from white cabbage, carrots,
and a stockpile of pickled cucumbers discovered in the cellar. The following
table summarizes the numerical data: the prescribed amount of the vitamins
and fiber per dish, their content in the foods, and the unit prices of the foods.1

Food Carrot, White Cucumber, Required
Raw Cabbage, Raw Pickled per dish

Vitamin A [mg/kg] 35 0.5 0.5 0.5mg
Vitamin C [mg/kg] 60 300 10 15mg
Dietary Fiber [g/kg] 30 20 10 4 g
price [e /kg] 0.75 0.5 0.15∗ —
∗Residual accounting price of the inventory, most likely unsaleable.

At what minimum additional price per dish can the requirements of the
Office of Nutrition Inspection be satisfied? This question can be expressed
by the following linear program:

Minimize 0.75x1 + 0.5x2 + 0.15x3

subject to x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
35x1 + 0.5x2 + 0.5x3 ≥ 0.5
60x1 + 300x2 + 10x3 ≥ 15
30x1 + 20x2 + 10x3 ≥ 4.

The variable x1 specifies the amount of carrot (in kg) to be added to each dish,
and similarly for x2 (cabbage) and x3 (cucumber). The objective function

1 For those interested in healthy diet: The vitamin contents and other data are
more or less realistic.

2.1 Optimized Diet: Wholesome and Cheap? 13

expresses the price of the combination. The amounts of carrot, cabbage, and
cucumber are always nonnegative, which is captured by the conditions x1 ≥ 0,
x2 ≥ 0, x3 ≥ 0 (if we didn’t include them, an optimal solution might perhaps
have the amount of carrot, say, negative, by which one would seemingly save
money). Finally, the inequalities in the last three lines force the requirements
on vitamins A and C and of dietary fiber.

The linear program can be solved by standard methods. The optimal
solution yields the price of e 0.07 with the following doses: carrot 9.5 g,
cabbage 38 g, and pickled cucumber 290 g per dish (all rounded to two
significant digits). This probably wouldn’t pass another round of inspection.
In reality one would have to add further constraints, for example, one on the
maximum amount of pickled cucumber.

We have included this example so that our treatment doesn’t look too
revolutionary. It seems that all introductions to linear programming begin
with various dietary problems, most likely because the first large-scale prob-
lem on which the simplex method was tested in 1947 was the determination
of an adequate diet of least cost. Which foods should be combined and in
what amounts so that the required amounts of all essential nutrients are sat-
isfied and the daily ration is the cheapest possible. The linear program had
77 variables and 9 constraints, and its solution by the simplex method using
hand-operated desk calculators took approximately 120 man-days.

Later on, when George Dantzig had already gained access to an electronic
computer, he tried to optimize his own diet as well. The optimal solution of
the first linear program that he constructed recommended daily consumption
of several liters of vinegar. When he removed vinegar from the next input,
he obtained approximately 200 bouillon cubes as the basis of the daily diet.
This story, whose truth is not entirely out of the question, doesn’t diminish
the power of linear programming in any way, but it illustrates how difficult it
is to capture mathematically all the important aspects of real-life problems.
In the realm of nutrition, for example, it is not clear even today what exactly
the influence of various components of food is on the human body. (Although,
of course, many things are clear, and hopes that the science of the future will
recommend hamburgers as the main ingredient of a healthy diet will almost
surely be disappointed.) Even if it were known perfectly, few people want
and can formulate exactly what they expect from their diet—apparently,
it is much easier to formulate such requirements for the diet of someone
else. Moreover, there are nonlinear dependencies among the effects of various
nutrients, and so the dietary problem can never be captured perfectly by
linear programming.

There are many applications of linear programming in industry, agricul-
ture, services, etc. that from an abstract point of view are variations of the
diet problem and do not introduce substantially new mathematical tricks.
It may still be challenging to design good models for real-life problems of
this kind, but the challenges are not mathematical. We will not dwell on

14 2. Examples

such problems here (many examples can be found in Chvátal’s book cited in
Chapter 9), and we will present problems in which the use of linear program-
ming has different flavors.

2.2 Flow in a Network

An administrator of a computer network convinced his employer to purchase
a new computer with an improved sound system. He wants to transfer his
music collection from an old computer to the new one, using a local network.
The network looks like this:

3

1

1

4

1

4

3

4

c
e

b

a

d

1

1

o

n

What is the maximum transfer rate from computer o (old) to computer n
(new)? The numbers near each data link specify the maximum transfer rate
of that link (in Mbit/s, say). We assume that each link can transfer data in
either direction, but not in both directions simultaneously. So, for example,
through the link ab one can either send data from a to b at any rate from 0
up to 1 Mbit/s, or send data from b to a at any rate from 0 to 1 Mbit/s.

The nodes a, b, . . . , e are not suitable for storing substantial amounts of
data, and hence all data entering them has to be sent further immediately.
From this we can already see that the maximum transfer rate cannot be used
on all links simultaneously (consider node a, for example). Thus we have to
find an appropriate value of the data flow for each link so that the total
transfer rate from o to n is maximum.

For every link in the network we introduce one variable. For example, xbe

specifies the rate by which data is transfered from b to e. Here xbe can also be
negative, which means that data flow in the opposite direction, from e to b.
(And we thus do not introduce another variable xeb, which would correspond
to the transfer rate from e to b.) There are 10 variables: xoa, xob, xoc, xab,
xad, xbe, xcd, xce, xdn, and xen.

We set up the following linear program:

2.2 Flow in a Network 15

Maximize xoa + xob + xoc

subject to −3 ≤ xoa ≤ 3, −1 ≤ xob ≤ 1, −1 ≤ xoc ≤ 1
−1 ≤ xab ≤ 1, −1 ≤ xad ≤ 1, −3 ≤ xbe ≤ 3
−4 ≤ xcd ≤ 4, −4 ≤ xce ≤ 4, −4 ≤ xdn ≤ 4
−1 ≤ xen ≤ 1

xoa = xab + xad

xob + xab = xbe

xoc = xcd + xce

xad + xcd = xdn

xbe + xce = xen.

The objective function xoa +xob +xoc expresses the total rate by which data
is sent out from computer o. Since it is neither stored nor lost (hopefully)
anywhere, it has to be received at n at the same rate. The next 10 constraints,
−3 ≤ xoa ≤ 3 through −1 ≤ xen ≤ 1, restrict the transfer rates along the
individual links. The remaining constraints say that whatever enters each of
the nodes a through e has to leave immediately.

The optimal solution of this linear program is depicted below:

2

1

1

1

1

2

2

3

c
e

b

a

d

1

1

o n

The number near each link is the transfer rate on that link, and the arrow
determines the direction of the data flow. Note that between c and e data has
to be sent in the direction from e to c, and hence xce = −1. The optimum
value of the objective function is 4, and this is the desired maximum transfer
rate.

In this example it is easy to see that the transfer rate cannot be larger,
since the total capacity of all links connecting the computers o and a to the
rest of the network equals 4. This is a special case of a remarkable theorem
on maximum flow and minimum cut, which is usually discussed in courses on
graph algorithms (see also Section 8.2).

Our example of data flow in a network is small and simple. In practice,
however, flows are considered in intricate networks, sometimes even with
many source nodes and sink nodes. These can be electrical networks (current
flows), road or railroad networks (cars or trains flow), telephone networks
(voice or data signals flow), financial (money flows), and so on. There are
also many less-obvious applications of network flows—for example, in image
processing.

16 2. Examples

Historically, the network flow problem was first formulated by
American military experts in search of efficient ways of disrupting
the railway system of the Soviet block; see

A. Schrijver: On the history of the transportation and max-
imum flow problems, Math. Programming Ser. B 91(2002)
437–445.

2.3 Ice Cream All Year Round

The next application of linear programming again concerns food (which
should not be surprising, given the importance of food in life and the diffi-
culties in optimizing sleep or love). The ice cream manufacturer Icicle Works
Ltd.2 needs to set up a production plan for the next year. Based on history,
extensive surveys, and bird observations, the marketing department has come
up with the following prediction of monthly sales of ice cream in the next
year:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

100

200

300

400

500

600

700

sales [tons]

Now Icicle Works Ltd. needs to set up a production schedule to meet
these demands.

A simple solution would be to produce “just in time,” meaning that all
the ice cream needed in month i is also produced in month i, i = 1, 2, . . . , 12.
However, this means that the produced amount would vary greatly from
month to month, and a change in the produced amount has significant costs:
Temporary workers have to be hired or laid off, machines have to be adjusted,

2 Not to be confused with a rock group of the same name. The name comes from
a nice science fiction story by Frederik Pohl.

2.3 Ice Cream All Year Round 17

and so on. So it would be better to spread the production more evenly over
the year: In months with low demand, the idle capacities of the factory could
be used to build up a stock of ice cream for the months with high demand.

So another simple solution might be a completely “flat” production sched-
ule, with the same amount produced every month. Some thought reveals that
such a schedule need not be feasible if we want to end up with zero surplus
at the end of the year. But even if it is feasible, it need not be ideal either,
since storing ice cream incurs a nontrivial cost. It seems likely that the best
production schedule should be somewhere between these two extremes (pro-
duction following demand and constant production). We want a compromise
minimizing the total cost resulting both from changes in production and from
storage of surpluses.

To formalize this problem, let us denote the demand in month i by di ≥ 0
(in tons). Then we introduce a nonnegative variable xi for the production in
month i and another nonnegative variable si for the total surplus in store
at the end of month i. To meet the demand in month i, we may use the
production in month i and the surplus at the end of month i − 1:

xi + si−1 ≥ di for i = 1, 2, . . . , 12.

The quantity xi + si−1 − di is exactly the surplus after month i, and thus we
have

xi + si−1 − si = di for i = 1, 2, . . . , 12.

Assuming that initially there is no surplus, we set s0 = 0 (if we took the
production history into account, s0 would be the surplus at the end of the
previous year). We also set s12 = 0, unless we want to plan for another year.

Among all nonnegative solutions to these equations, we are looking for one
that minimizes the total cost. Let us assume that changing the production
by 1 ton from month i − 1 to month i costs e 50, and that storage facilities
for 1 ton of ice cream cost e 20 per month. Then the total cost is expressed
by the function

50
12∑

i=1

|xi − xi−1| + 20
12∑

i=1

si,

where we set x0 = 0 (again, history can easily be taken into account).
Unfortunately, this cost function is not linear. Fortunately, there is a

simple but important trick that allows us to make it linear, at the price of
introducing extra variables.

The change in production is either an increase or a decrease. Let us intro-
duce a nonnegative variable yi for the increase from month i− 1 to month i,
and a nonnegative variable zi for the decrease. Then

xi − xi−1 = yi − zi and |xi − xi−1| = yi + zi.

A production schedule of minimum total cost is given by an optimal so-
lution of the following linear program:

18 2. Examples

Minimize 50
∑12

i=1 yi + 50
∑12

i=1 zi + 20
∑12

i=1 si

subject to xi + si−1 − si = di for i = 1, 2, . . . , 12
xi − xi−1 = yi − zi for i = 1, 2, . . . , 12
x0 = 0
s0 = 0
s12 = 0
xi, si, yi, zi ≥ 0 for i = 1, 2, . . . , 12.

To see that an optimal solution (s∗,y∗, z∗) of this linear program indeed
defines a schedule, we need to note that one of y∗

i and z∗i has to be zero for
all i, for otherwise, we could decrease both and obtain a better solution. This
means that y∗

i + z∗i indeed equals the change in production from month i− 1
to month i, as required.

In the Icicle Works example above, this linear program yields the follow-
ing production schedule (shown with black bars; the gray background graph
represents the demands).

100

200

300

400

500

600

700

production
[tons]

Below is the schedule we would get with zero storage costs (that is, after
replacing the “20” by “0” in the above linear program).

100

200

300

400

500

600

700

production
[tons]

2.4 Fitting a Line 19

The pattern of this example is quite general, and many problems of opti-
mal control can be solved via linear programming in a similar manner. A neat
example is “Moon Rocket Landing,” a once-popular game for programmable
calculators (probably not sophisticated enough to survive in today’s compe-
tition). A lunar module with limited fuel supply is descending vertically to
the lunar surface under the influence of gravitation, and at chosen time inter-
vals it can flash its rockets to slow down the descent (or even to start flying
upward). The goal is to land on the surface with (almost) zero speed before
exhausting all of the fuel. The reader is invited to formulate an appropriate
linear program for determining the minimum amount of fuel necessary for
landing, given the appropriate input data. For the linear programming for-
mulation, we have to discretize time first (in the game this was done anyway),
but with short enough time steps this doesn’t make a difference in practice.

Let us remark that this particular problem can be solved analytically, with
some calculus (or even mathematical control theory). But in even slightly
more complicated situations, an analytic solution is out of reach.

2.4 Fitting a Line

The loudness level of nightingale singing was measured every evening for a
number of days in a row, and the percentage of people watching the principal
TV news was surveyed by questionnaires. The following diagram plots the
measured values by points in the plane:

loudness level [dB]

TV watchers [%]

60

50

40

20 30 40 50

The simplest dependencies are linear, and many dependencies can be well
approximated by a linear function. We thus want to find a line that best fits
the measured points. (Readers feeling that this example is not sufficiently
realistic can recall some measurements in physics labs, where the measured
quantities should actually obey an exact linear dependence.)

20 2. Examples

How can one formulate mathematically that a given line “best fits” the
points? There is no unique way, and several different criteria are commonly
used for line fitting in practice.

The most popular one is the method of least squares, which for given
points (x1, y1),. . . , (xn, yn) seeks a line with equation y = ax + b minimizing
the expression

n∑

i=1

(axi + b − yi)
2. (2.1)

In words, for every point we take its vertical distance from the line, square
it, and sum these “squares of errors.”

This method need not always be the most suitable. For instance, if a few
exceptional points are measured with very large error, they can influence the
resulting line a great deal. An alternative method, less sensitive to a small
number of “outliers,” is to minimize the sum of absolute values of all errors:

n∑

i=1

|axi + b − yi|. (2.2)

By a trick similar to the one we have seen in Section 2.3, this apparently
nonlinear optimization problem can be captured by a linear program:

Minimize e1 + e2 + · · · + en

subject to ei ≥ axi + b − yi for i = 1, 2, . . . , n
ei ≥ −(axi + b − yi) for i = 1, 2, . . . , n.

The variables are a, b, and e1, e2, . . . , en (while x1, . . . , xn and y1, . . . , yn are
given numbers). Each ei is an auxiliary variable standing for the error at the
ith point. The constraints guarantee that

ei ≥ max
(
axi + b − yi,−(axi + b − yi)

)
= |axi + b − yi|.

In an optimal solution each of these inequalities has to be satisfied with
equality, for otherwise, we could decrease the corresponding ei. Thus, an
optimal solution yields a line minimizing the expression (2.2).

The following picture shows a line fitted by this method (solid) and a line
fitted using least squares (dotted):

2.5 Separation of Points 21

In conclusion, let us recall the useful trick we have learned here and in
the previous section:

Objective functions or constraints involving absolute values can often be
handled via linear programming by introducing extra variables or extra
constraints.

2.5 Separation of Points

A computer-controlled rabbit trap “Gromit RT 2.1” should be programmed
so that it catches rabbits, but if a weasel wanders in, it is released. The trap
can weigh the animal inside and also can determine the area of its shadow.

These two parameters were collected for a number of specimens of rabbits
and weasels, as depicted in the following graph:

weight

shadow area

(empty circles represent rabbits and full circles weasels).
Apparently, neither weight alone nor shadow area alone can be used to

tell a rabbit from a weasel. One of the next-simplest things would be a lin-
ear criterion distinguishing them. That is, geometrically, we would like to
separate the black points from the white points by a straight line if possi-
ble. Mathematically speaking, we are given m white points p1,p2, . . . ,pm

22 2. Examples

and n black points q1,q2, . . . ,qn in the plane, and we would like to find out
whether there exists a line having all white points on one side and all black
points on the other side (none of the points should lie on the line).

In a solution of this problem by linear programming we distinguish three
cases. First we test whether there exists a vertical line with the required prop-
erty. This case needs neither linear programming nor particular cleverness.

The next case is the existence of a line that is not vertical and that has all
black points below it and all white points above it. Let us write the equation
of such a line as y = ax + b, where a and b are some yet unknown real
numbers. A point r with coordinates x(r) and y(r) lies above this line if
y(r) > ax(r) + b, and it lies below it if y(r) < ax(r) + b. So a suitable line
exists if and only if the following system of inequalities with variables a and b
has a solution:

y(pi) > ax(pi) + b for i = 1, 2, . . . , m

y(qj) < ax(qj) + b for j = 1, 2, . . . , n.

We haven’t yet mentioned strict inequalities in connection with linear
programming, and actually, they are not allowed in linear programs. But here
we can get around this issue by a small trick: We introduce a new variable δ,
which stands for the “gap” between the left and right sides of each strict
inequality. Then we try to make the gap as large as possible:

Maximize δ
subject to y(pi) ≥ ax(pi) + b + δ for i = 1, 2, . . . , m

y(qj) ≤ ax(qj) + b − δ for j = 1, 2, . . . , n.

δ

δ

y ≥ ax + b + δ

y = ax + b

y ≤ ax + b − δ

This linear program has three variables: a, b, and δ. The optimal δ is positive
exactly if the preceding system of strict inequalities has a solution, and the
latter happens exactly if a nonvertical line exists with all black points below
and all white points above.

2.6 Largest Disk in a Convex Polygon 23

Similarly, we can deal with the third case, namely the existence of a non-
vertical line having all black points above it and all white points below it. This
completes the description of an algorithm for the line separation problem.

A plane separating two point sets in R3 can be computed by the
same approach, and we can also solve the analogous problem in higher
dimensions. So we could try to distinguish rabbits from weasels based
on more than two measured parameters.

Here is another, perhaps more surprising, extension. Let us imagine
that separating rabbits from weasels by a straight line proved impos-
sible. Then we could try, for instance, separating them by a graph of
a quadratic function (a parabola), of the form ax2 + bx + c. So given
m white points p1,p2, . . . ,pm and n black points q1,q2, . . . ,qn in the
plane, we now ask, are there coefficients a, b, c ∈ R such that the graph
of f(x) = ax2 +bx+c has all white points above it and all black points
below? This leads to the inequality system

y(pi) > ax(pi)
2 + bx(pi) + c for i = 1, 2, . . . , m

y(qj) < ax(qj)
2 + bx(qj) + c for j = 1, 2, . . . , n.

By introducing a gap variable δ as before, this can be written as the
following linear program in the variables a, b, c, and δ:

Maximize δ
subject to y(pi) ≥ ax(pi)

2 + bx(pi) + c + δ for i = 1, 2, . . . , m
y(qj) ≤ ax(qj)

2 + bx(qj) + c − δ for j = 1, 2, . . . , n.

In this linear program the quadratic terms are coefficients and there-
fore they cause no harm.

The same approach also allows us to test whether two point sets in
the plane, or in higher dimensions, can be separated by a function of
the form f(x) = a1ϕ1(x) + a2ϕ2(x) + · · ·+ akϕk(x), where ϕ1, . . . , ϕk

are given functions (possibly nonlinear) and a1, a2, . . . , ak are real co-
efficients, in the sense that f(pi) > 0 for every white point pi and
f(qj) < 0 for every black point qj .

2.6 Largest Disk in a Convex Polygon

Here we will encounter another problem that may look nonlinear at first
sight but can be transformed to a linear program. It is a simple instance of a
geometric packing problem: Given a container, in our case a convex polygon,
we want to fit as large an object as possible into it, in our case a disk of the
largest possible radius.

24 2. Examples

Let us call the given convex polygon P , and let us assume that it has
n sides. As we said, we want to find the largest circular disk contained in P .

P

???

For simplicity let us assume that none of the sides of P is vertical. Let the
ith side of P lie on a line �i with equation y = aix + bi, i = 1, 2, . . . , n, and
let us choose the numbering of the sides in such a way that the first, second,
up to the kth side bound P from below, while the (k + 1)st through nth side
bound it from above.

(s1, s2)

r

�k

�k+1

�1
�2

�n

Let us now ask, under what conditions does a circle with center s = (s1, s2)
and radius r lie completely inside P? This is the case if and only if the point
s has distance at least r from each of the lines �1, . . . , �n, lies above the lines
�1, . . . , �k, and lies below the lines �k+1, . . . , �n. We compute the distance of s
from �i. A simple calculation using similarity of triangles and the Pythagorean
theorem shows that this distance equals the absolute value of the expression

s2 − ais1 − bi√
a2

i + 1
.

Moreover, the expression is positive if s lies above �i, and it is negative if
s lies below �i:

2.6 Largest Disk in a Convex Polygon 25

(s1, s2)

(s1, ais1 + bi)

y = aix + bi

The disk of radius r centered at s thus lies inside P exactly if the following
system of inequalities is satisfied:

s2 − ais1 − bi√
a2

i + 1
≥ r, i = 1, 2, . . . , k

s2 − ais1 − bi√
a2

i + 1
≤ −r, i = k + 1, k + 2, . . . , n.

Therefore, we want to find the largest r such that there exist s1 and s2 so that
all the constraints are satisfied. This yields a linear program! (Some might be
frightened by the square roots, but these can be computed in advance, since
all the ai are concrete numbers.)

Maximize r

subject to
s2 − ais1 − bi√

a2
i + 1

≥ r for i = 1, 2, . . . , k

s2 − ais1 − bi√
a2

i + 1
≤ −r for i = k + 1, k + 2, . . . , n.

There are three variables: s1, s2, and r. An optimal solution yields the desired
largest disk contained in P .

A similar problem in higher dimension can be solved analogously. For
example, in three-dimensional space we can ask for the largest ball that can
be placed into the intersection of n given half-spaces.

Interestingly, another similar-looking problem, namely, finding the small-
est disk containing a given convex n-gon in the plane, cannot be expressed
by a linear program and has to be solved differently; see Section 8.7.

Both in practice and in theory, one usually encounters geometric packing
problems that are more complicated than the one considered in this section
and not so easily solved by linear programming. Often we have a fixed collec-
tion of objects and we want to pack as many of them as possible into a given
container (or several containers). Such problems are encountered by confec-
tioners when cutting cookies from a piece of dough, by tailors or clothing

26 2. Examples

manufacturers when making as many trousers, say, as possible from a large
piece of cloth, and so on. Typically, these problems are computationally hard,
but linear programming can sometimes help in devising heuristics or approx-
imate algorithms.

2.7 Cutting Paper Rolls

Here we have another industrial problem, and the application of linear pro-
gramming is quite nonobvious. Moreover, we will naturally encounter an in-
tegrality constraint, which will bring us to the topic of the next chapter.

A paper mill manufactures rolls of paper of a standard width 3 meters.
But customers want to buy paper rolls of shorter width, and the mill has to
cut such rolls from the 3 m rolls. One 3 m roll can be cut, for instance, into
two rolls 93 cm wide, one roll of width 108 cm, and a rest of 6 cm (which
goes to waste).

Let us consider an order of

• 97 rolls of width 135 cm,
• 610 rolls of width 108 cm,
• 395 rolls of width 93 cm, and
• 211 rolls of width 42 cm.

What is the smallest number of 3 m rolls that have to be cut in order to
satisfy this order, and how should they be cut?

In order to engage linear programming one has to be generous in intro-
ducing variables. We write down all of the requested widths: 135 cm, 108 cm,
93 cm, and 42 cm. Then we list all possibilities of cutting a 3 m paper roll
into rolls of some of these widths (we need to consider only possibilities for
which the wasted piece is shorter than 42 cm):

P1: 2 × 135 P7: 108 + 93 + 2 × 42
P2: 135 + 108 + 42 P8: 108 + 4 × 42
P3: 135 + 93 + 42 P9: 3 × 93
P4: 135 + 3 × 42 P10: 2 × 93 + 2 × 42
P5: 2 × 108 + 2 × 42 P11: 93 + 4 × 42
P6: 108 + 2 × 93 P12: 7 × 42

For each possibility Pj on the list we introduce a variable xj ≥ 0 rep-
resenting the number of rolls cut according to that possibility. We want to
minimize the total number of rolls cut, i.e.,

∑12
j=1 xj , in such a way that the

customers are satisfied. For example, to satisfy the demand for 395 rolls of
width 93 cm we require

x3 + 2x6 + x7 + 3x9 + 2x10 + x11 ≥ 395.

2.7 Cutting Paper Rolls 27

For each of the widths we obtain one constraint.

For a more complicated order, the list of possibilities would most
likely be produced by computer. We would be in a quite typical situ-
ation in which a linear program is not entered “by hand,” but rather
is generated by some computer program. More-advanced techniques
even generate the possibilities “on the fly,” during the solution of the
linear program, which may save time and memory considerably. See
the entry “column generation” in the glossary or Chvátal’s book cited
in Chapter 9, from which this example is taken.

The optimal solution of the resulting linear program has x1 = 48.5, x5 =
206.25, x6 = 197.5, and all other components 0. In order to cut 48.5 rolls
according to the possibility P1, one has to unwind half of a roll. Here we
need more information about the technical possibilities of the paper mill:
Is cutting a fraction of a roll technically and economically feasible? If yes,
we have solved the problem optimally. If not, we have to work further and
somehow take into account the restriction that only feasible solutions of the
linear program with integral xi are of interest. This is not at all easy in
general, and it is the subject of Chapter 3.

