
CSC473: Advanced Algorithm Design Winter 2018

Week 7–8: Linear Programming

Aleksandar Nikolov

1 Introduction

You have seen the basics of linear programming in CSC373, so much of this should be review
material.

A linear program (LP for short) is an optimization problem in which the constraints are linear
inequalities and equalities, and the objective function is also linear. There are many equivalent
standard forms for LPs. We will use the following form for a maximization problem:

max cᵀx

s.t.

Ax ≤ b
x ≥ 0

Let us explain the notation a bit. Here A is an m× n matrix (i.e. m constraints and n variables)
and b is an m× 1 column vector; c is an n× 1 column vector which encodes the objective function
and cᵀ is its transpose; x is an n× 1 column vector which contains the variables we are optimizing
over. The inequalities between vectors mean that the inequality should hold in all coordinates
simultaneously. The value of this LP is the minimum value of the objective cᵀx achieved subject
to x satisfying the constraints. Any value of x that satisfies the constraints x ≥ 0 and Ax ≤ b is
called feasible. The set of feasible x is called the feasible set or feasible region of the LP. When
the feasible set is empty, the LP is called infeasible. The maximum value of the objective cᵀx over
feasible x is the optimal value of the LP. If this maximum is infinity, i.e. for any t ∈ R there exists
a feasible x s.t. cᵀx ≥ t, then the LP is called unbounded.

Analogously, the standard form we use for a minimization problem is:

min cᵀx

s.t.

Ax ≥ b
x ≥ 0

Just for concreteness, let us write a tiny example of a linear program:

minx1 + x2 + x3 (1)

s.t.

x1 + x2 ≥ 1 (2)

x2 + x3 ≥ 1 (3)

x1 + x3 ≥ 1 (4)

x1, x2, x3 ≥ 0 (5)

1

This LP corresponds to

b = c =

1
1
1

 , A =

1 1 0
0 1 1
1 0 1

 .

Exercise 1. Let G = (V,E) be a directed connected graph, let c : E → R be the capacities, and let
s, t ∈ V be, respectively, a source and a target vertex. Use linear programming to decide whether
there exists a flow f : E → R from s to t of value 1 that strictly respects the capacity constraints,
i.e. such that for all e ∈ E we have 0 ≤ f(e) < c(e). Write a linear program which is feasible and
has positive value if such a flow exists, and is infeasible or has value 0 if no such flow exists.

2 Geometric View

A geometric view is very useful in understanding LPs. Let us plot the the points (x1, x2, x3)
satisfying the following system of inequalities:

x1 + x2 + x3 ≤ 1 (6)

x1, x2, x3 ≥ 0 (7)

Figure 1 shows the points satisfying these inequalities. Let us introduce some terminology. Recall

Figure 1: A polytope in 3 dimensions.

the equation of a line in two dimensions a1x1 + a2x2 = b, which can be written in vector notation
as aᵀx = b. Similarly, in three dimensions, the equation of a plane is a1x2 + a2x2 + a3x3 = b which
in vector notation is aᵀx = b. In general the set {x ∈ Rn : aᵀx = b}, where Rn is the set of vectors
with n real coordinates, is called a hyperplane. For some geometric intuition, let us mention that
any line lying in the hyperplane H = {x ∈ Rn : aᵀx = b} which intersects the line ` = {ta : t ∈ R}
is perpendicular to `.

Exercise 2. If ` is the line ` = ` = {ta : t ∈ R} and H is the halfspace H = {x ∈ Rn : aᵀx = b},
determine the point z = `∩H. Show that any line `′ = {z+ tv : t ∈ R} contained in H must satisfy
aᵀv = 0.

2

The set {x ∈ Rn : aᵀx ≤ b} is called a halfspace, and {x :∈ Rn : aᵀx = b} is its supporting
or bounding hyperplane. To get a picture of a halfspace, notice that in 2 dimensions a halfspace
is everything on one side of a line, and in 3 dimensions it’s everything on one side of a plane.
See Figure 2 for examples. The figure satisfying equations (6)–(7) is the intersection of the four

Figure 2: Halfspaces in 2 and 3 dimensions.

halfspaces {x ∈ R3 : x1 + x2 + x3 ≤ 1}, {x ∈ R3 : x1 ≥ 0}, {x ∈ R3 : x2 ≥ 0}, {x ∈ R3 : x3 ≥ 0}. A
set which is the intersection of halfspaces is called a polyhedron. We can always write a polyhedron
P as P = {x ∈ Rn : Ax ≤ b} for some matrix A and vector b.

A polyhedron P ⊆ Rn is unbounded when there exists a point x ∈ P and a direction v ∈ Rn such
that for every t ≥ 0, x + tv ∈ P . (A set of the type {x + tv : t ≥ 0} is called a ray.) Intuitively,
this means that there is a starting point and a direction in which we can go infinitely long. For
example, the polyhedron satisfying the inequalities

−x1 + 2x2 ≥ 1

2x1 − x2 ≥ 1

is unbounded, because the ray {(1, 1) + t(1, 1) : t ≥ 0} is contained in it (see Figure 2). When a
polyhedron is bounded (i.e. not unbounded), it is called a polytope. For example, the set in Figure 1
is a polytope.

Figure 3: Unbounded polyhedron

Notice the structure of the polytope in Figure 1: its surface “consists” of 4 triangles glued to each
other (we see three of them and one is hidden from view). These triangles are called the facets of
the polytope. The triangles two by two along a line segment: these line segments (6 of them) are

3

called the edges of the polytope. Finally, the triangles meet three by three at a point: these points
(4 of them) are called the vertices of the polytope.

Formally, a face of a polyhedron P = {x : Ax ≤ b} ⊂ Rn is a set of the type F = {x : Ax ≤
b} ∩ {x : aix = bi ∀i ∈ S}, where ai is the i-th row of the matrix A, and S is some subset of the
rows of A. Usually, we also assume that F 6= ∅. Let us use the notation SF for the set of all i such
that aix = bi for all x ∈ F . When the dimension of the span of {ai : i ∈ SF }, or, equivalently,
the rank of the submatrix AF of A consisting of the rows of A indexed by SF , is n − j, we say
that F is a face of dimension j, or, in short, a j-face. The dimension of the polytope P itself is
defined similarly: SP is the set of all i such that aix = bi for all x ∈ P , and the dimension of P
is n− rank AP , where AP is the submatrix of A consisting of the rows indexed by SP . We say P
is full-dimensional when its dimension is n, i.e., when SP = ∅. The faces of dimension one lower
than the dimension of P are called facets; the 1-faces are called edges, and the 0-faces are called
vertices. To see the reason behind this definition of the dimension, let us take some point x which
is strictly inside F , i.e., not in any face strictly contained in F , and let W = {z : AF z = 0} be the
nullspace of AF . Then for any i 6∈ SF , aix < bi, and if we take any z ∈ W , and a small enough
constant ε > 0, the point x′ = x + εz still satisfies aix

′ = bi for all i ∈ SF , and aix
′ < bi for all

i 6∈ SF . Since, by the rank-nullity theorem, W is a subspace of dimension n − j, this means that
there is an (n − j)-dimensional ball around x which lies inside F , which is why we say that F is
(n− j)-dimensionl.

Exercise 3. Let v be a vertex of the polytope P = {Ax ≤ b} and let S be the set S = {i : aiv = bi}.
Give a formula for v in terms of S, A, and b. Give an upper bound on the number of vertices of P
in terms of the dimensions of the matrix A.

For example, let P be the polytope satisfying the constraints (6)–(7). The triangle with vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1) is a facet (and also a 2-face), and can be written as F = P ∩
{x1 + x2 + x3 = 1}. The edge e connecting (1, 0, 0) and (0, 1, 0) is a 1-face, can be written as
e = P ∩ {x1 + x2 + x3 = 1, x3 = 0}. The vertex v = (0, 0, 1) is a 0-face, can be written as
v = P ∩ {x1 + x2 + x3 = 1, x1 = 0, x2 = 0}. See Figure 4 for a 2-dimensional example.

P

H1

F

v

F1

F2

Figure 4: Faces of a 2-dimensional polytope (i.e. a polygon). The 1-face F is the intersection P ∩H.
The vertex v is the intersection of the two facets F1 and F2.

A polytope is determined by its vertices in a strong sense. To make this precise, we define the
notion of a convex hull: the convex hull of the points v1, . . . , vN ∈ Rn is the set

conv{v1, . . . , vN} = {λ1v1 + . . .+ λNvN : λ ≥ 0, λ1 + . . .+ λN = 1}.

4

For some geometric intuition, we mention that the convex hull of two points v1, v2 is simply the line
segment connecting them; the convex hull of three points v1, v2, v3 is the triangle with the points
as its vertices. In general, conv{v1, . . . , vN} is the smallest polytope that contains v1, . . . , vN .

Exercise 4. Show that if v1, . . . , vN belong to the polytope P = {Ax ≤ b}, then conv{v1, . . . , vN} ⊆
P .

We have the following basic theorem. You will not be responsible for the proof, but we include it
for your interest.

Theorem 1. A polytope P with vertices v1, . . . , vN satisfies P = conv{v1, . . . , vN}.

Proof Sketch. Let P = {x : Ax ≤ b}, and let Sx = {i : aix = bi}. Let Ax be the submatrix of A
consisting of the rows indexed by Sx. We will show that every x ∈ P is in the convex hull of the
vertices v1, . . . , vN ; i.e. we will show that there exist non-negative λ1, . . . , λN , which sum to 1, and
give λ1v1 + . . . + λNvN = x. This will show that P ⊆ conv{v1, . . . , vN}. The other containment
conv{v1, . . . , vN} ⊆ P follows from Exercise 4.

The proof is by induction on n− rank Ax. In the base case we have rank Ax = n, and then x is a
vertex of P , so there is nothing to show. Assume then that rank Ax < n. Then there exists some
vector y ∈ Rn for which Axy = 0. Let

α = max{α′ : x+ α′y ∈ P},
β = max{β′ : x− β′y ∈ P}.

These maxima must exist, because P is bounded. Pictorially, we are finding some direction y such
that we can walk a positive distance in the direction of y and stay inside P , and also we can walk
a positive distance in the direction of −y and also stay inside P . This is illustrated in Figure 5.
The main point of the proof is that the furthest points we can travel in these directions lie in lower
dimensional faces of P .

x

y

x+ αy

x− βy

Figure 5: Illustration of the inductive step in the proof of Theorem 1

It is easy to check that

α = min

{
bi − aix
aiy

: aiy > 0

}
,

β = min

{
bi − aix
|aiy|

: aiy < 0

}
.

From these expressions it is clear that α, β > 0. Moreover, there exists some i+ (any one one
achieving the minimum) such that ai+y > 0 and ai+x+ αai+y = bi+ . We have Sx+αy ⊇ Sx ∪ {i+}.

5

Since ai+y > 0, ai+ cannot be in the linear span of {ai : i ∈ Sx}. Therefore, rank Ax+αy > rank Ax.
Analogously, we can show rank Ax−βy > rank Ax. By induction, we have

x+ αy = λ′1v1 + . . .+ λ′NvN ,

x− βy = λ′′1v1 + . . .+ λ′′NvN ,

for non-negative λ′, λ′′ such that λ′1 + . . .+ λ′N = λ′′1 + . . .+ λ′′N = 1. Then, we can write

x =
αβ

α(α+ β)
(x+ αy) +

αβ

β(α+ β)
(x− βy).

We can then define λi = αβ
α(α+β)λ

′
i + αβ

β(α+β)λ
′′
i for all i, and we are done.

Let us now interpret LPs geometrically. Let’s take a maximization problem max{cᵀx : Ax ≤ b, x ≥
0}. The feasible set P = {Ax ≤ b, x ≥ 0} is a polyhedron. We can view the objective c as a vector
pointing from the origin 0 to the point with coordinates c. So the LP asks us to find the point in
P which is the farthest out in the direction of the vector c. For example, consider the LP which
maximizes the value of x3 subject to the constraints (6)–(7). This LP corresponds to finding the
point furthest along the direction of the vector pointing from the origin to (0, 0, 1) in the polytope
in Figure 1. I.e. we want to find the point in the polytope which is highest up. Visually, it’s clear
that the optimal solution of the LP is the point (0, 0, 1). Notice that the optimal solution is a
vertex. This is a general phenomenon, and in fact follows easily from Theorem 1.

Corollary 2. If max{cᵀx : Ax ≤ b, x ≥ 0} is an LP whose feasible region P = {x : Ax ≤ b, x ≥ 0}
is a polytope, then the LP has an optimal solution which is a vertex of P .

Proof. Let x be any optimal solution of the LP. By Theorem 1, we can write x = λ1v1 + . . .+λNvN ,
where λ ≥ 0, λ1 + . . .+ λN = 1, and v1, . . . , vN are the vertices of P . We have

cᵀx = λ1c
ᵀv1 + . . .+ λNc

ᵀvN ≤ λ1
N

max
i=1

cᵀvi + . . .+ λN
N

max
i=1

cᵀvi =
N

max
i=1

cᵀvi.

Therefore any vertex vi achieving the maximum on the right hand side is also an optimal solution
of the LP.

Note that if the LP has many optimal solutions, then not all of them will be vertices, but there
always will be at least one which is a vertex. For example, suppose we maximize the objective
x1 + x2 + x3 subject to the constraints (6)–(7). Then one optimal solution is (1/3, 1/3, 1/3), which
is not a vertex. Nevertheless, the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) are all optimal solutions as
well.

3 Simplex and Ellipsoid Algorithms

After this introduction to geometry, we will describe, on a very high level, two algorithms for
solving linear programs. We will only describe these algorithms geometrically, and will not worry
about the implementation details, which are far from trivial. Our goal is just to get the geometric
intuition behind the algorithms, which are both quite beautiful.

6

3.1 Simplex Algorithm

The idea of the simplex algorithm is simple. Suppose we want to solve the LP max{cᵀx : Ax ≤
b, x ≥ 0}. Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} be the feasible region. As we already saw, P is a
polyhedron; for simplicity, let’s assume that it is also a polytope. The simplex algorithm starts at
some vertex x(0) of P . (Getting a vertex to start from is not always easy. However, for many LPs in
practice there is a clear choice.) Let N(x(0)) be the set of neighboring vertices to x(0), i.e. vertices
y such that there is an edge of P connecting x(0) and y. The algorithm picks an element x(1)

of N(x(0)) such that cᵀx(1) > cᵀx(0). Then this process continues: at each step t, the algorithm
computes a new vertex x(t) from x(t−1) by picking a vertex x(t) ∈ N(x(t−1)) s.t. cᵀx(t) > cᵀx(t−1).
We stop once the objective function cannot be improved anymore: in this case, if P is a polytope,
i.e. bounded, we have found an optimal solution to the LP, and, moreover, the solution is a vertex.
In Figure 6 we show a run of the simplex algorithm on a 3-dimensional cube.

c

Figure 6: The simplex algorithm, run on a cube.

We have swept many things under the rug:

• How do we find a starting vertex x(0)?

• How do we know if P is bounded?

• How do we compute the neighboring vertices of x(t)?

• If there are multiple options for x(t) which improve the objective value, which one do we pick?

An very interesting question is the running time of the simplex algorithm. While the algorithm
seems to perform really well in practice, for essentially all known variants of it the worst-case
complexity is exponential. Here by “variants” we mean the rule used to pick a neighbor x(t) of x(t−1),
when there are multiple options. Such rules are known as pivot rules. It remains an important open
problem to find a pivot rule for which the simplex algorithm runs in time polynomial in the number
of variables and the number of constraints, or to show that no such pivot rule exists. One way to
show that no such pivot rule exists would be to give a counterexample to the polynomial Hirsch
conjecture: come up with a polytope P ⊂ Rn, determined by m constraints, and two vertices x, y
of P such that the shortest path between x and y has exponentially many edges.

3.2 The Ellipsoid Algorithm

The ellipsoid algorithm is based on very different ideas. In order to understand the algorithm, we
need to take another detour into geometry, and introduce ellipsoids. Recall that in two dimensions

7

we can write an ellipse (with major axes parallel to the coordinate axes) as {x ∈ R2 : a2(x1 −
y1)2 + b2(x2 − y2)2 ≤ 1}. See Figure 7 for an example with y1 = y2 = 1, a = 1, b = 2. In higher

Figure 7: An ellipse in 2 dimensions

dimensions we define an ellipsoid as the set E(y,M) = {x ∈ Rn : (x − y)ᵀMᵀM(x − y) ≤ 1},
where M is an n × n invertible matrix, and y ∈ Rn is the center of the ellipsoid. When M = 1

r I
(I here is the identity matrix) we write B(y, r) = E(y, r−1I); such en ellipsoid is called a ball of
radius r. In 2 dimensions, this is a disc of radius r, and in 3 dimensions it is a 3-dimensional ball
of radius r. Indeed, in 2 dimensions, B(y, r) = {(x1, x2) :

√
(x1 − y1)2 + (x2 − y2)2 ≤ r}, and

in 3 dimensions B(y, r) = {(x1, x2, x3) :
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 ≤ r}. In general
E(y,M) = y + M−1B(0, 1), where M−1B(0, 1) = {M−1z : z ∈ B(0, 1)}. In other words, an
ellipsoid is the image of the unit ball under a translation and a linear map. (The combination of a
translation and a linear map is known as an affine map or an affine transformation.)

Here we are going to focus on the feasibility problem: given a polytope, described by inequalities,
decide if it is empty. There are several ways to reduce solving LPs to this feasibility problem, and
possibly the simplest one is based on binary search. Suppose we have the LP

max cᵀx

s.t.

Ax ≤ b
x ≥ 0

and let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} be its feasible region. It’s usually easy to get two values
v, V ∈ R such that the optimal solution of the LP is guaranteed to be in the interval [v, V]. Let
Qt = P ∩{x ∈ Rn : cTx ≥ t}. For any value of t, Qt is a polytope, and solving the LP is equivalent
to finding the largest t such that Qt 6= ∅. If we have an efficient procedure to solve the feasibility
problem, we can get arbitrarily close to this optimal t by doing binary search on [v, V].

Let us then focus on the feasibility problem: given a polytope Q = {x ∈ Rn : Dx ≤ e}, decide
if it is empty or not. In fact, we need a little more information. We need a number R so that
Q ⊆ B(0, R). We also need another number r < R, and we need the “promise” that either Q = ∅,
or there exists a center y ∈ Rn for which B(y, r) ⊆ Q. R can be computed from the description
of Q. In order to satisfy the promise, we compute another polytope Q̃, based on Q such that if Q
is empty, then Q̃ also is empty, and if Q is not empty, then Q̃ contains a ball of radius r. In the
description of the algorithm below, we assume that we have substituted Q with Q̃ and the promise
is satisfied.

We can finally describe the algorithm, which is actually quite intuitive. At each time step t, the
algorithm keeps an ellipsoid Et = E(yt,Mt) so that Q ⊆ Et. Initially, E0 = B(0, R). At step t, the
algorithm checks if the center yt−1 of Et−1 is in Q. If it is, then Q is non-empty, and the algorithm

8

terminates. Otherwise, we can find some constraint of Q violated by yt−1, i.e. some row di of the
matrix D so that diyt−1 > ei. Let H−i be the halfspace {x ∈ Rn : dix ≤ ei}. We know that
Q ⊆ Et−1 ∩H−i . Moreover, Et−1 ∩H−i has volume1 at most half that of Et−1, because it does not
contain the center of Et−1. Then we can compute a new ellipsoid Et which contains Et−1∩H−i , and,
therefore, contains Q as well. While Et will have volume slightly larger than that of Et−1 ∩ H−i ,
we can still show that its volume is strictly less than that of Et−1. Therefore, the volume of the
ellipsoids E0, E1, E2, . . . keeps decreasing, and after a while we know that the volume of Et is less
than that of any ball of radius r. This means that there is no y ∈ Rn such that B(y, r) ⊆ Q, and,
by the promise we had on r and Q, we know that Q = ∅.

A step of the algorithm is illustrated in Figure 8.

P

E0

y0

H−
i

P

E1

E0

y1

Figure 8: One step of the ellipsoid algorithm.

Unlike the simplex algorithm, the ellipsoid algorithm has worst-case running time polynomial in the
number of bits needed to describe the LP. In fact, it was the first such algorithm, and of significant
theoretical importance. However, in practice the simplex algorithm usually performs quite well,
while the ellipsoid algorithm is not really practical. It seems that the simplex algorithm, unlike the
ellipsoid algorithm, achieves its worst-case performance only on very special instances. Moreover,
the ellipsoid algorithm needs to perform algebraic operations down to very high precision, which
slows it down significantly.

There is another family of algorithms which we will not mention: interior point methods. These
algorithms reduce solving an LP to solving an unconstrained, but non-linear optimization problem.
Their name comes from the fact that, geometrically, they trace a path towards the optimal solution
inside the feasible region, rather than on the boundary, as the simplex algorithm. The most efficient
interior point methods give the best of both worlds: their worst-case running time is polynomial,
and they also tend to perform well in practice. Interior point methods are currently a very active
area of research.

Finally, there are algorithms designed to solve specific LPs. In fact you already have seen such
algorithms: the maximum flow problem can be written as an LP, and the different variants of
the Ford-Fulkerson algorithm solve this LP. Soon we will see other examples, when we talk about

1There is a natural way to generalize 2-dimensional area and 3-dimensional volume to n-dimensional volume. The
idea is that that a set in Rn of volume 1 has as much “space” inside of it as the side 1 cube {x ∈ Rn : 0 ≤ xi ≤ 1 ∀i ∈
{1, . . . n}}.

9

primal-dual algorithms. While these algorithms do not work for general LPs, they are usually
simple and efficient.

4 Duality

Consider the LP in (1)–(5). If you wanted to convince someone that the optimal value of this LP
is at most 3/2, then all you need to do is to present them with a feasible solution x which achieves
this value. For example, you can take x1 = x2 = x3 = 1/2. However, how would you convince
someone that this is in fact an optimal solution, i.e. that the optimal value of the LP is also at least
3/2? No single feasible solution proves that, because the optimal value of the LP is the minimum
over all feasible solutions. A powerful idea is to show that the inequality x1 + x2 + x3 ≥ 3/2 is
implied by the constraints of the LP. In this case this is actually quite easy. You can add up the
three constraints (2)–(4) and you get the new (implied) constraint 2x1 +2x2 +2x3 ≥ 3. Now divide
both sides of this inequality by 2 and you are done.

For another example, let us take the LP which maximizes x3 subject to the constraints (6)–(7).
As we mentioned before, geometrically, it seems clear that the optimal value is 1. To show more
formally that the value is at least 1, we just need to exhibit a feasible solution: x1 = x2 = 0 and
x3 = 1. To show that x3 ≤ 1, observe that (6) and the non-negativity constraints (7) imply that
x3 ≤ x1 + x2 + x3 ≤ 1.

Let us try to formalize this technique, and put it in as general terms as possible. Recall that we
write a generic maximization LP as:

max cᵀx (8)

s.t.

Ax ≤ b (9)

x ≥ 0 (10)

Let us call this the primal LP. To it corresponds a dual LP:

min bᵀy (11)

s.t.

Aᵀy ≥ c (12)

y ≥ 0 (13)

Notice that in this program the variables are y ∈ Rm, where m is the number of rows of the matrix
A. To see how we this LP corresponds to what we did above, observe that Aᵀy, for any y ≥ 0
is a non-negative combination of the left hand sides of the constraints Ax ≤ b, and bᵀy is the
corresponding non-negative combination of the right hand sides.

Exercise 5. Write the dual linear program to the following linear program:

max cᵀx

s.t. Ax = b

x ≥ 0

10

The following theorem, known as the weak duality theorem, proves that the dual LP indeed gives
upper bounds on the optimal value of the primal LP.

Theorem 3 (Weak Duality). Let x satisfy the primal constraints (9)–(10), and let y satisfy the
dual constraints (12)–(13). Then cᵀx ≤ bᵀy.

Proof. The main observation we use is that if u, v, w ∈ Rn, and u ≥ v, w ≥ 0, then uᵀw ≥ vᵀw.
(Make sure you understand this.)

Using c ≤ Aᵀy and x ≥ 0, we have cᵀx ≤ yᵀAx. In turn, using Ax ≤ b and y ≥ 0, we have
yᵀAx ≤ yᵀb. Combining the two inequalities proves the theorem.

A surprising, important, and very powerful fact is that this simple way to bound the optimal value
of an LP gives a tight bound for every LP:

Theorem 4 (Strong Duality). Suppose that the primal program (8)–(10) and the dual program (11)–
(13) are both feasible. Then their optimal values are equal.

The heart of the proof of this theorem is a useful lemma, known as Farkas’s lemma. There are
many different version of it. We will state one which is amenable to a geometric proof.

Lemma 5 (Farkas’s Lemma). For any m× n matrix A and any m× 1 vector b, exactly one of the
following two statements is true:

1. There exists a x ∈ Rn, x ≥ 0, such that Ax = b.

2. There exists a y ∈ Rm such that Aᵀy ≤ 0 and bᵀy > 0.

You can view Farkas’s lemma as characterizing when the constraints Ax = b, x ≥ 0 are (in)feasible:
there either exists a simple “obstacle” to feasibility, i.e. a vector y such that Aᵀy ≤ 0 and bᵀy > 0, or
the constraints are feasible. It should be clear that the existence of such a y contradicts feasibility
of Ax = b, x ≥ 0. The lemma shows that this is the only possible reason the constraints are not
feasible.

Exercise 6. Prove that if there exists a vector y ∈ Rm such that Aᵀy ≤ 0 and bᵀy > 0, then there
exists no x ≥ 0 such that Ax = b.

It may be helpful to see an analogue to Farkas’s lemma for linear equalities.

Exercise 7. Using what you know from linear algebra, prove that for any m×n matrix A and any
m× 1 vector b, exactly one of the following two statements is true:

1. There exists a x ∈ Rn such that Ax = b.

2. There exists a y ∈ Rm such that Aᵀy = 0 and yᵀb 6= 0.

Proof of Lemma 5. From Exercise 6, only one of the two statements can be true. It only remains
to show that if the first statement is not true, the second must be. I.e. we need to show that the
only possible reason that Ax = b is not feasible is that there exists a y as in the second statement.

11

In the proof, we will adopt a geometric viewpoint. Let C = {Ax : x ≥ 0}. Such a set is called a
cone. If the first statement of the Lemma does not hold, then we have that b 6∈ C. Observe that if
Aᵀy ≤ 0, then every z ∈ C satisfies yᵀz = yᵀAx ≤ 0. Then, geometrically what we are trying to
show is that if b 6∈ C, then there exists a hyperplane H = {z : yᵀz = 0} through the origin, such
that all of C is on one side of H, and b is on the other. This is a simple geometric certificate that
b 6∈ C, and a special case of the hyperplane separation theorem. See Figure 9 for an illustration.

b

H

y

C

a1

a2

Figure 9: An illustration of the Farkas lemma for a 2 by 2 matrix A = (a1, a2).

In the proof we will work with the (Euclidean) norm ‖ · ‖ defined for a vector z ∈ Rm by ‖z‖ =√
zᵀz =

√
z2

1 + . . .+ z2
m. Notice that in two or three dimensions this gives the usual distance from

the origin 0 to z. It is clear from the definition that ‖z‖ > 0 for every nonzero z, and ‖0‖ = 0.

Let now z be the closest point in C to b: z = arg min{‖b−z′‖2 : z′ ∈ C}. We will need the following
important claim.

Claim 6. We have zᵀ(b− z) = 0.

Proof. If z = 0 the claim is trivially true, so let us assume z 6= 0. Let us write the function
f(t) = ‖b − tz‖2. From the definition of z, we have that f(1) is a minimum of this function over
t ≥ 0, and, therefore f ′(1) = 0 by elementary calculus. Expanding f(t), we have

f(t) = (b− tz)ᵀ(b− tz) = ‖b‖2 + t2‖z‖2 − 2tzᵀb.

Therefore, f ′(t) = 2t‖z‖2− 2zᵀb, and f ′(1) = 0 implies 2zᵀ(z− b) = 2‖z‖2− 2zᵀb = 0. Multiplying
both sides by −1/2 gives zᵀ(b− z) = 0.

Geometrically, the claim means that z and b− z must form a right angle.

Because b 6∈ C, we must have ‖b− z‖2 > 0: otherwise b− z = 0, so b = z ∈ C, a contradiction. Let
us define y = b− z. Then ‖b− z‖2 > 0 implies

0 < (b− z)ᵀ(b− z) = bᵀ(b− z)− zᵀ(b− z) = bᵀy.

Here in the final equality we used the definition of y and Claim 6. We have then found a y such
that bᵀy > 0. It remains to show that that Aᵀy ≤ 0. We shall prove this by contradiction. Assume
that there exists some column ai of A such that (ai)ᵀy > 0. We will show that this means that
there exists a z′ ∈ C for which ‖b− z′‖2 < ‖b− z‖, contradicting the choice of z.

12

Let us take z′ = (1 − α)z + αai, for a real number α ∈ [0, 1] to be chosen later. Then, using
z′ = z + α(ai − z), we have

‖b− z′‖2 = ((b− z)− α(ai − z))ᵀ((b− z)− α(ai − z))
= (y − α(ai − z))ᵀ(y − α(ai − z))
= ‖y‖2 + α2‖ai − z‖2 − 2αyᵀ(ai − z).

By Claim 6, we have yᵀz = zᵀy = zᵀ(b− z) = 0. So, the equation above simplifies to

‖b− z′‖2 = ‖y‖2 + α2‖ai − z‖2 − 2αyᵀai.

If α < 2yᵀai

‖ai−z‖2 , the equation above gives ‖b− z′‖2 < ‖y‖2 = ‖b− z‖2. Moreover, because 2yᵀai

‖ai−z‖2 =

2(ai)ᵀy
‖ai−z‖2 > 0, we can choose such an α in [0, 1]. But, if we choose some x ≥ 0 such that z = Ax

(which exists because z ∈ C), then we have z′ = Ax′ for x′ defined by x′j = (1 − α)xj for j 6= i,
and x′i = (1− α)xi + α. It is obvious that x′ ≥ 0, which implies that z′ = Ax′ ∈ C. Then, we have
found a z′ for which ‖b− z′‖2 < ‖b− z‖2, contradicting the choice of z. This completes the proof
of the lemma.

Farkas’s lemma is also known as a theorem of the alternative, because it gives two statements
exactly one of which is true. Many other proofs are known: for example, one based on a variant
of Gaussian elimination known as Fourier-Motzkin elimination, and another based on the simplex
method.

While Lemma 5 was convenient for our proof method, the following version is more useful in proving
Theorem 4:

Lemma 7 (Farkas’s Lemma, variant). For any m × n matrix A and any m × 1 vector b, exactly
one of the following two statements is true:

1. There exists a x ∈ Rn such that x ≥ 0 and Ax ≤ b.

2. There exists a y ∈ Rm such that y ≥ 0, Aᵀy ≥ 0 and bᵀy < 0.

Exercise 8. Derive Lemma 7 from Lemma 5.

Proof of Theorem 4. The theorem has a very short proof once we have established Farkas’s lemma.
We will opt for a slightly longer proof, in the hope that it provides some geometric intuition.

For a given t ∈ R, define the halfspace H+
t = {x ∈ Rn : cᵀx ≥ t}, and let P = {x ∈ Rn : Ax ≥

b, x ≥ 0} be the feasible region of the primal LP (8)–(10). Recall that we assumed that P 6= ∅.
Geometrically, the optimal value of this LP is the largest value t such that H+

t ∩ P 6= ∅ (see
Figure 10). Farkas’s lemma gives us a necessary and sufficient condition for H+

t ∩ P = ∅. To see
this, define:

Ã =

(
A
−cᵀ

)
; b̃ =

(
b
−t

)
.

Notice that the system of inequalities Ãx ≤ b̃, x ≥ 0 is feasible if and only if H+
t ∩P 6= ∅. Then, by

Lemma 7, H+
t ∩ P = ∅ if and only if there exists a y ∈ Rm, y ≥ 0, such that Aᵀy ≥ c and yᵀb < t.

(Make sure you understand how this follows from the lemma: we have skipped one or

13

H+
t

P

Figure 10: Geometric proof of strong duality: the feasible region P and the halfspace H+
t .

two steps here.) In other words, H+
t ∩ P = ∅ if and only if the optimal value of the dual LP is

strictly less than t.

We are now ready to finish the proof. Let vP be the value of the primal LP, and vD the value
of the dual LP. Since we assumed that both the primal and dual are feasible, by Theorem 3 this
means that both vP and vD are finite and achieved. Because the optimal value of the dual LP is
vD, there does not exist any y ∈ Rm such that y ≥ 0, Aᵀy ≥ c, and yᵀb < vD. This implies, by
our observations above, that H+

vD
∩ P 6= ∅, and, therefore, vP ≥ vD. By Theorem 3, vP ≤ vD, and,

therefore, vP = vD.

Exercise 9. Using Lemma 7, show that, assuming {x : Ax ≤ b, x ≥ 0} 6= ∅, the set {x : cᵀx ≥
t, Ax ≤ b, x ≥ 0} is empty if and only if there exists a y ∈ Rm, y ≥ 0, such that Aᵀy ≥ c and
yᵀb < t.

In some cases we treat the minimization LP (11)–(13) as the primal program. In these cases, we
say that the maximization LP (8)–(10) is the dual of the minimization LP (11)–(13). Theorems 3,
and 4 hold with the obvious modifications. Moreover, notice that if we take the dual of an LP
twice, we get back the original LP. In other words, it’s not really important which LP we treat as
the primal and which we treat as the dual: if they are both feasible, then their optimal values are
equal.

In passing, we mention that the concept of dual pairs is pervasive in modern mathematics. Some
examples of duality in mathematics are: dual vector spaces, point-line duality in projective geom-
etry, duality of planar graphs, duality of lattices, the duality between a function and its Fourier
transform, etc.

5 Complementary Slackness

Complementary slackness is an easy but very useful consequence of LP duality. It gives a combina-
torial condition for the optimality of an LP solution. We will make extensive use of complementary
slackness when we discuss primal-dual algorithms.

14

Theorem 8. Let x be a feasible solution to the primal LP (8)–(10), and let y be a feasible solution
to the dual LP (11)–(13). Then x and y are both optimal if and only if the following conditions are
satisfied:

∀i ∈ {1, . . . ,m} : (bi − (Ax)i)yi = 0

∀i ∈ {1, . . . , n} : ((Aᵀy)j − cj)xj = 0

Proof. By Theorem 4, x and y are optimal if and only if cᵀx = bᵀy = v. By the feasibility of x and
y, we have

yᵀAx ≤ yᵀb = v

yᵀAx ≥ cᵀx = v

Therefore,
yᵀAx = cᵀx = yᵀb (14)

(14) implies that yᵀ(b− Ax) = 0. Because, by the feasibility of y and x, each coordinate of y and
each coordinate of b − Ax is non-negative, their inner product yᵀ(b − Ax) can be 0 if and only if
(bi − (Ax)i)yi = 0 for every i ∈ {1, . . . ,m}. This is the first condition of the theorem. Similarly,
(14) implies (yᵀA− cᵀ)x = 0, which gives the second condition of the theorem.

Let us spell out what Theorem 8 says in words: a primal feasible solution x and a dual feasible
solution y are optimal if and only if:

• whenever a dual variable yi is positive, the corresponding primal constraint is tight, i.e. (Ax)i =
bi; conversely, if the primal constraint is “slack”, i.e. (Ax)i < bi, then the corresponding dual
variable is 0.

• whenever a primal variable xj is positive, the corresponding dual constraint is tight, i.e. (Aᵀy)j =
cj ; conversely, if the dual constraint is slack, i.e. (Aᵀy)j > cj , then the corresponding dual
variable is 0.

6 Max Flow - Min Cut via LP

We will prove the Max Flow - Min Cut theorem via LP duality and complementary slackness. Let
us recall some notation first. We consider a directed graph G = (V,E), in which each edge e ∈ E
is given a capacity ce. We are also given two vertices s, t ∈ V . In the maximum flow problem, our
goal is compute a flow from s to t, i.e. a flow vector f ∈ RE , such that:

• the flow leaving s,
∑

(s,v)∈E fsv −
∑

(v,s)∈E fvs is maximized;

• the flow satisfies the non-negativity and capacity constraints: 0 ≤ fe ≤ ce for every e ∈ E;

• the flow satisfies the flow conservation constraints: for every u ∈ V \ {s, t},
∑

(v,u)∈E fvu =∑
(u,v)∈E fuv.

15

An s-t cut in the graph is a partition of V into two sets S, S̄, such that s ∈ S and t ∈ S̄. The value
of the cut is c(S, S̄) =

∑
(u,v)∈E:u∈S,v∈S̄ cuv.

Theorem 9 (Max Flow - Min Cut). In any directed graph G = (V,E), for any s, t ∈ V , the
maximum flow from s to t equals the minimum value of an s-t cut.

To prove this theorem, let us write the maximum flow problem as a linear program:

max
∑

(s,v)∈E

fsv −
∑

(u,s)∈E

fus (15)

s.t.

∀u ∈ V \ {s, t} :
∑

(v,u)∈E

fvu −
∑

(u,v)∈E

fuv = 0 (16)

∀e ∈ E : 0 ≤ fe ≤ ce. (17)

Verify that this linear program captures the maximum flow problem. The dual of this
linear program is:

min
∑
e∈E

ceye (18)

s.t.

∀(u, v) ∈ E : xv − xu + yuv ≥ 0 (19)

xs = 1;xt = 0 (20)

∀e ∈ E : ye ≥ 0 (21)

The dual variables y correspond to the primal constraints fe ≤ ce. It may be helpful to observe
that, in an optimal solution x, y, we will always have yuv = max{xu − xv, 0}, so, in fact, the dual
LP is equivalent to minimizing

∑
(u,v)∈E ce max{xu − xv, 0} subject to xs = 1 and xt = 0.

Exercise 10. Show that the linear programs

max bᵀf

s.t.

Af = 0

0 ≤ f ≤ c

and

min cᵀy

s.t.

Aᵀx+ y ≥ b
y ≥ 0

are dual to each other. Here the first program has variables f , and the second program has variables
x and y. To verify the duality, write the first program in standard form, dualize it, and simplify.

16

Exercise 11. Use the previous exercise to show that the linear program (15)–(17) is dual to the
program

min
∑
e∈E

ceye

s.t.

∀(u, v) ∈ E, u, v 6∈ {s, t} : xv − xu + yuv ≥ 0

∀(u, s) ∈ E : − xu + yus ≥ −1

∀(s, v) ∈ E : xv + ysv ≥ 1

∀(u, t) ∈ E : − xu + yut ≥ 0

∀(t, v) ∈ E : xv + ytv ≥ 0

∀e ∈ E : ye ≥ 0

which has a variable xu for every vertex of G except s and t, and a variable ye for every edge of
G. Then show that this program is equivalent to (18)–(21).

Proof of Theorem 9. Let F be the value of the maximum flow, which is also equal to the optimal
value of (15)–(17), and let C be the minimum value of an s-t cut.

The inequality F ≤ C is easy to prove directly, but let us verify that it also follows from weak
duality. Indeed let (S, S̄) be a minimum s-t cut, i.e. an s-t cut s.t. C = c(S, S̄). Define a feasible
solution x′, y′ of (18)–(21) by setting x′u = 1 for all u ∈ S, and x′u = 0 for all u ∈ S̄, and setting
yuv = 1 if and only if (u, v) ∈ E, u ∈ S, v ∈ S̄. Verify that x′ and y′ are feasible. This solution
has value c(S, S̄) = C, and, therefore, the optimal solution of (18)–(21) has value at most C, and,
by Theorem 3, F , the value of (15)–(17), is at most C as well.

So far we have seen that the “easy” part of the Max Flow - Min Cut theorem, the inequality F ≤ C,
follows from the “easy” part of LP duality, weak duality. Next, we will see that the “hard” part of
the theorem follows from strong duality, in the form of complementary slackness. Let f, x, y be the
optimal solutions of (15)–(17) and (18)–(21). Define an s-t cut (S, S̄) by S = {u ∈ V : xu ≥ 1},
S̄ = {u ∈ V : xu < 1}. We make the following observations:

• s ∈ S;

• If (u, v) ∈ E, u ∈ S, v ∈ S̄, then yuv ≥ xu − xv > 0, so, by Theorem 8, the corresponding
primal constraint is tight, i.e. fe = ce;

• If (u, v) ∈ E, u ∈ S̄, v ∈ S, then xv − xu + yuv ≥ xv − xu > 0. Therefore, by Theorem 8, the
corresponding primal variable is 0, i.e. fuv = 0.

By (16) (i.e. flow conservation),
∑

(u,v)∈E fuv −
∑

(v,u)∈E fvu = 0 for all u ∈ S \ {s}. We can then
write

F =
∑

(s,v)∈E

fsv −
∑

(v,s)∈E

fvs =
∑
u∈S

∑
(u,v)∈E

fuv −
∑
u∈S

∑
(v,u)∈E

fvu.

Observe now that, on the right hand side, for any edge (u, v) such that u and v are both in S, fuv
appears twice – once with a positive sign, and once with a negative – and therefore, cancels. On
the other hand, for any edge (u, v) such that u and v are both in S̄, fuv does not appear at all. So,

17

the only terms that remain are fuv, where (u, v) ∈ E, u ∈ S, v ∈ S̄, and −fuv, where (u, v) ∈ E,
u ∈ S̄, v ∈ S. I.e.

F =
∑

(u,v)∈E:u∈S,v∈S̄

fuv −
∑

(u,v)∈E:u∈S̄,v∈S

fuv =
∑

(u,v)∈E:u∈S,v∈S̄

ce = c(S, S̄).

Here in the second equation we used the observations based on complementary slackness we made
in the previous paragraph. Since c(S, S̄) ≥ C, we have shown that F ≥ C. Combining with the
easy inequality F ≤ C that we already proved, we have F = C.

Notice that in the proof of Theorem 9 we have in fact shown that the the optimal value of (18)–(21)
equals the minimum value of an s-t-cut, and is achieved by an integral solution, i.e. one in which
all coordinates of x and y are integers, and, in fact are either 0 or 1.

18

