Random Assignment and Derandomization

CSC 473 Advanced Algorithms

Maximum Satisfiability

- Max SAT: Given m clauses C_1, \ldots, C_m over variables x_1, \ldots, x_n find an assignment to the variables that maximizes the number of satisfied clauses
- Literal: a variable x_i or its negation $\overline{x_i}$
- A clause is a disjunction (OR) of (any number of) literals
 - E.g. $x_1 \vee \overline{x_5} \vee \overline{x_7} \vee x_{12}$, or x_{10}
 - Satisfied if at least one literal is true
- E.g. C₁ = x₁, C₂ = x₁ ∨ x₂, C₃ = x₁ ∨ x₂ ∨ x₃.
 x₁ = F, x₂ = F, x₃ = T satisfies all clauses
- NP-hard to approximate better than a factor $\frac{7}{8}$. We will see factor $\frac{1}{2}$.

Random Assignment

- *OPT* = maximum number of satisfiable clauses
- Upper bound (trivial): $OPT \le m$
 - At most every clause is satisfied
- Lemma Some assignment satisfies at least $\frac{m}{2} \ge \frac{OPT}{2}$ clauses.
- Set $x_j = B_j$, where $B_j \in \{T, F\}$, uniformly at random, independent
- $Y_i = 1 \Leftrightarrow C_i$ is satisfied. $Y = \sum_{i=1}^m Y_i$ is the number of sat. clauses

 $\mathbb{E}[Y] = \sum_{i=1}^{\infty} \mathbb{E}[Y_i] \ge \frac{m}{2}$

• If C_i has k literals, then $\mathbb{E}[Y_i] = \mathbb{P}(Y_i = 1) = 1 - 2^{-k} \ge \frac{1}{2}$

Exactly one of 2^k choices of assignments to the literals in C_i makes it unsatisfied.

Deterministic Algorithm?

- Is there a deterministic (i.e., no randomness) algorithm that, for any clauses C_1, \ldots, C_m finds an assignment satisfying $\geq \frac{m}{2}$ clauses.
 - Achieves the approximation always, rather than in expectation

• *Idea*: set
$$x_1 = b_1, ..., x_n = b_n$$
 one by one, so that
 $\mathbb{E}[Y|x_1 = b_1, ..., x_j = b_j] \ge \mathbb{E}[Y] \ge \frac{m}{2}$

holds for all *j*.

• $\mathbb{E}[Y|x_1 = b_1, ..., x_n = b_n]$ is just the deterministic number of satisfied clauses.

Conditional Expectations

- How do we set x_1 ?
- Key observation:

$$\mathbb{E}[Y] = \mathbb{E}[Y|x_1 = T] \cdot \mathbb{P}(x_1 = T) + \mathbb{E}[Y|x_1 = F] \cdot \mathbb{P}(x_1 = F)$$
$$= \mathbb{E}[Y|x_1 = T] \cdot \frac{1}{2} + \mathbb{E}[Y|x_1 = F] \cdot \frac{1}{2}$$
$$\leq \max\{\mathbb{E}[Y|x_1 = T], \mathbb{E}[Y|x_1 = F]\}$$

• Set $x_1 = T$ if $\mathbb{E}[Y|x_1 = T] \ge \mathbb{E}[Y|x_1 = F]$, and to F otherwise

Conditional Expectations

• More generally:

$$\begin{split} & \mathbb{E} \Big[Y | x_1 = b_1, \dots, x_{j-1} = b_{j-1} \Big] \\ &= \mathbb{E} \Big[Y | x_1 = b_1, \dots, x_j = T \Big] \cdot \frac{1}{2} + \mathbb{E} \Big[Y | x_1 = b_1, \dots, x_j = F \Big] \cdot \frac{1}{2} \\ &\leq \max \{ \mathbb{E} \Big[Y | x_1 = b_1, \dots, x_j = T \Big], \mathbb{E} \Big[Y | x_1 = b_1, \dots, x_j = F \Big] \} \end{split}$$

• Set
$$x_j = T$$
 if $\mathbb{E}[Y|x_1 = b_1, ..., x_j = T] \ge \mathbb{E}[Y|x_1 = b_1, ..., x_j = F]$, o/w to F

• By induction, $\mathbb{E}[Y|x_1 = b_1, ..., x_n = b_n] \ge \mathbb{E}[Y] \ge \frac{m}{2}$ for assignment $b_1, ..., b_n$ Computer Science UNIVERSITY OF TORONTO

Computing the Conditional Expectations

- How do we compute $\mathbb{E}[Y|x_1 = b_1, ..., x_j = b_j]$?
- By linearity of expectation

$$\mathbb{E}[Y|x_1 = b_1, \dots, x_i = b_i] = \sum_{i=1}^m \mathbb{E}[Y_i|x_1 = b_1, \dots, x_j = b_j]$$

= $\sum_{i=1}^m \mathbb{P}(Y_i = 1 | x_1 = b_1, \dots, x_j = b_j)$

000

- Probability that C_i is satisfied conditional on $x_1 = b_1, ..., x_j = b_j$ is
 - 1, if one literal is already set to T
 - $1 2^{-k}$ if no literal set to *T*, and *k* literals still unset

Computer Science UNIVERSITY OF TORONTO