Random Assignment and Derandomization

CSC 473 Advanced Algorithms

Maximum Satisfiability

- Max SAT: Given m clauses C_{1}, \ldots, C_{m} over variables x_{1}, \ldots, x_{n} find an assignment to the variables that maximizes the number of satisfied clauses
- Literal: a variable x_{j} or its negation $\overline{x_{j}}$
- A clause is a disjunction (OR) of (any number of) literals
- E.g. $x_{1} \vee \overline{x_{5}} \vee \overline{x_{7}} \vee x_{12}$, or x_{10}
- Satisfied if at least one literal is true
- E.g. $C_{1}=\overline{x_{1}}, C_{2}=x_{1} \vee \overline{x_{2}}, C_{3}=x_{1} \vee x_{2} \vee x_{3}$.
- $x_{1}=F, x_{2}=F, x_{3}=T$ satisfies all clauses
- NP-hard to approximate better than a factor $\frac{7}{8}$. We will see factor $\frac{1}{2}$.

Random Assignment

- $O P T=$ maximum number of satisfiable clauses
- Upper bound (trivial): OPT $\leq m$
- At most every clause is satisfied
- Lemma Some assignment satisfies at least $\frac{m}{2} \geq \frac{O P T}{2}$ clauses.
- Set $x_{j}=B_{j}$, where $B_{j} \in\{T, F\}$, uniformly at random, independent
- $Y_{i}=1 \Leftrightarrow C_{i}$ is satisfied. $Y=\sum_{i=1}^{m} Y_{i}$ is the number of sat. clauses
- If C_{i} has k literals, then $\mathbb{E}\left[Y_{i}\right]=\mathbb{P}\left(Y_{m}=1\right)=1-2^{-k} \geq \frac{1}{2}$

$$
\mathbb{E}[Y]=\sum_{i=1}^{m} \mathbb{E}\left[Y_{i}\right] \geq \frac{m}{2}
$$

Computer Science

Deterministic Algorithm?

- Is there a deterministic (i.e., no randomness) algorithm that, for any clauses C_{1}, \ldots, C_{m} finds an assignment satisfying $\geq \frac{m}{2}$ clauses.
- Achieves the approximation always, rather than in expectation
- Idea: set $x_{1}=b_{1}, \ldots, x_{n}=b_{n}$ one by one, so that

$$
\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=b_{j}\right] \geq \mathbb{E}[Y] \geq \frac{m}{2},
$$

holds for all j.
$\bullet \mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{n}=b_{n}\right]$ is just the deterministic number of satisfied clauses.

Conditional Expectations

- How do we set x_{1} ?
- Key observation:

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[Y \mid x_{1}=T\right] \cdot \mathbb{P}\left(x_{1}=T\right)+\mathbb{E}\left[Y \mid x_{1}=F\right] \cdot \mathbb{P}\left(x_{1}=F\right) \\
& =\mathbb{E}\left[Y \mid x_{1}=T\right] \cdot \frac{1}{2}+\mathbb{E}\left[Y \mid x_{1}=F\right] \cdot \frac{1}{2} \\
& \leq \max \left\{\mathbb{E}\left[Y \mid x_{1}=T\right], \mathbb{E}\left[Y \mid x_{1}=F\right]\right\}
\end{aligned}
$$

- Set $x_{1}=T$ if $\mathbb{E}\left[Y \mid x_{1}=T\right] \geq \mathbb{E}\left[Y \mid x_{1}=F\right]$, and to F otherwise

Conditional Expectations

- More generally:

$$
\begin{aligned}
& \mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j-1}=b_{j-1}\right] \\
& =\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=T\right] \cdot \frac{1}{2}+\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=F\right] \cdot \frac{1}{2} \\
& \leq \max \left\{\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=T\right], \mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=F\right]\right\}
\end{aligned}
$$

- Set $x_{j}=T$ if $\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=T\right] \geq \mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=F\right], o / w$ to F
- By induction, $\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{n}=b_{n}\right] \geq \mathbb{E}[Y] \geq \frac{m}{2}$ for assignment b_{1}, \ldots, b_{n}

Computing the Conditional Expectations

- How do we compute $\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{j}=b_{j}\right]$?
- By linearity of expectation

$$
\begin{aligned}
\mathbb{E}\left[Y \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] & =\sum_{i=1}^{m} \mathbb{E}\left[Y_{i} \mid x_{1}=b_{1}, \ldots, x_{j}=b_{j}\right] \\
& =\sum_{i=1}^{m} \mathbb{P}\left(Y_{i}=1 \mid x_{1}=b_{1}, \ldots, x_{j}=b_{j}\right)
\end{aligned}
$$

- Probability that C_{i} is satisfied conditional on $x_{1}=b_{1}, \ldots, x_{j}=b_{j}$ is
- 1 , if one literal is already set to T
- $1-2^{-k}$ if no literal set to T, and k literals still unset

