Worksheet: Couplings

Aleksandar Nikolov

In this worksheet you will:

- Learn the concept of couplings.
- Learn about measuring distanced between probability distributions (via total variation distance).
- Learn how to bound total variation distance via couplings.

Coupling. A coupling of two random variables X and Y taking values in Ω is a random variable $Z=\left(Z_{1}, Z_{2}\right)$ taking values in $\Omega \times \Omega$, such that Z_{1} has the same probability distribution as X, and Z_{2} has the same probability distribution as Y. I.e. for any $x, y \in \Omega$:

$$
\mathbb{P}(X=x)=\sum_{z \in \Omega} \mathbb{P}\left(Z_{1}=x, Z_{2}=z\right) \quad \mathbb{P}(Y=y)=\sum_{z \in \Omega} \mathbb{P}\left(Z_{1}=z, Z_{2}=y\right)
$$

Exercise 1. As an example, consider X which is distributed uniformly in $\{1,2,3\}$, and Y such that $\mathbb{P}(Y=1)=1 / 2$, and $\mathbb{P}(Y=2)=\mathbb{P}(Y=3)=1 / 4$.
a. Suppose $Z=\left(Z_{1}, Z_{2}\right)$ is a coupling of X and Y such that Z_{1} and Z_{2} are independent. Fill out the table below, where rows indicate values for Z_{1}, and columns values for Z_{2}, and each entry is the probability of the corresponding pair of values.

$Z_{1} \backslash Z_{2}$	1	2	3
1			
2			
3			

b. Suppose $Z=\left(Z_{1}, Z_{2}\right)$ is chosen as follows. First, we sample Z_{1} uniformly in $\{1,2,3\}$. Then, with probability $3 / 4$, we set $Z_{2}=Z_{1}$, and with probability $1 / 4$, we set $Z_{2}=1$. Fill out the table for this coupling, and verify that it is a coupling of X and Y.

$Z_{1} \backslash Z_{2}$	1	2	3
1			
2			
3			

c. Now fill out the table for a coupling $Z=\left(Z_{1}, Z_{2}\right)$ of X and Y such that $\mathbb{P}\left(Z_{1} \neq Z_{2}\right)=1 / 6$.

$Z_{1} \backslash Z_{2}$	1	2	3
1			
2			
3			

Note: Usually we do not explicitly write Z but instead just say there is a coupling (X, Y) of X and Y, or that we have coupled X and Y, and write just X instead of Z_{1} and Y instead of Z_{2}.

Total Variation Distance. Given two random variables X and Y, taking values in the same finite set Ω, their total variation distance is

$$
d_{t v}(X, Y)=\max _{S \subseteq \Omega}|\mathbb{P}(X \in S)-\mathbb{P}(Y \in S)|
$$

I.e. this is the biggest difference in the probability assigned to any event by the distribution of X and the distribution of Y.

The following equation is often useful:

$$
d_{t v}(X, Y)=\frac{1}{2} \sum_{\omega \in \Omega}|\mathbb{P}(X=\omega)-\mathbb{P}(Y=\omega)|
$$

Lemma 1. Two random variables X and Y taking values in a finite set Ω have $d_{t v}(X, Y) \leq \alpha$ if and only if there exists a coupling (X, Y) such that $\mathbb{P}(X \neq Y) \leq \alpha$.

Exercise 2. Let's prove a special case of the "only if" direction. Suppose that X and Y take values in $\Omega=\{0,1\}$, and $\mathbb{P}(X=1)=p, \mathbb{P}(Y=1)=q, p>q$. Give a coupling of X and Y so that $\mathbb{P}(X=Y)=p-q$.

$X \backslash Y$	0	1
0		
1		

