# Chernoff Bounds 

CSC 473 Advanced Algorithms

## Variance and Chebyshev

- Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables
- Not necessarily uniform or identically distributed
- Remember, for $X=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \leq \mathbb{E}[X]
$$

- By Chebyshev's inequality:

$$
\mathbb{P}(X \geq(1+\delta) \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\delta^{2} \mathbb{E}[X]^{2}} \leq \frac{1}{\delta^{2} \mathbb{E}[X]}
$$

## The Chernoff Bound

- Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables
- Not necessarily uniform or identically distributed
- Chernoff Bound: if $\mathrm{X}=\sum_{i=1}^{n} X_{i}$ and $\mathbb{E}[X] \leq \mu$

$$
\mathbb{P}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)}\right)^{(1+\delta) \mu}
$$

- For $0 \leq \delta \leq 1$, the right hand side is $\leq e^{-\delta^{2} \mu / 3}$
- Compare with $\frac{1}{\delta^{2} \mu}$ from Chebyshev.


## Proof Idea

- "Chernoff trick": for any $t \geq 0$, by Markov's inequality

$$
\mathbb{P}(X \geq(1+\delta) \mathbb{E}[X])=\mathbb{P}\left(e^{t X} \geq e^{t(1+\delta) \mathbb{E}[X]}\right) \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mathbb{E}[X]}}
$$

- By independence of $X_{1}, \ldots, X_{n}$

$$
\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[e^{t\left(X_{1}+\cdots+X_{n}\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{t X_{i}}\right]
$$

- Using $1+z \leq e^{z}, \mathbb{E}\left[e^{t X_{i}}\right] \leq e^{\mathbb{E}\left[X_{i}\right]\left(e^{t}-1\right)}$, so $\mathbb{E}\left[e^{t X}\right] \leq e^{\mathbb{E}[X]\left(e^{t}-1\right)}$
- Choosing $t=\ln (1+\delta)$ gives the best bound.


## Balls and Bins



- Suppose we throw $n$ balls into $n$ bins
- Each ball lands in a uniformly random bin, independently from the others
- Theorem With prob. $\geq \frac{1}{2}$, no bin has more than $O\left(\frac{\log n}{\log \log n}\right)$ balls
- $X_{i j}=1 \Leftrightarrow$ ball $j$ lands in bin $i . X_{i}=\sum_{j=1}^{n} X_{i j}$ number of balls in bin $i$.
- $\mathbb{E}\left[X_{i j}\right]=\mathbb{P}\left(X_{i j}=1\right)=\frac{1}{n^{\prime}}$, so $\mathbb{E}\left[X_{i}\right]=1$.
- Chernoff: $\mathbb{P}\left(X_{i} \geq \frac{c \ln n}{\ln \ln n}\right) \leq \frac{1}{2 n}$ for all large enough $c, n$
- Use $\mu=1,1+\delta=\frac{c \ln n}{\ln \ln n}$. Then $\left(\frac{e^{\delta}}{(1+\delta)}\right)^{(1+\delta)} \approx e^{-c \ln n}=n^{-c}$
- Union bound: $\mathbb{P}\left(\exists i: X_{i} \geq \frac{c \ln n}{\ln \ln n}\right) \leq n \cdot \frac{1}{2 n}=\frac{1}{2}$


## Multicommodity Flow Problem

- Motivation: given a chip with "wire channels", connect locations with wires, so that no channel is overloaded
- Multicommodity Flow: Given an undirected graph $G=(V, E)$, and vertices $s_{1} t_{1}, \ldots, s_{k}, t_{k}$, find paths $P_{i}$ in $G$ connecting $s_{i}$ and $t_{i}$ so that the maximum number of paths going through any edge is minimized.

Squares -> vertices
Boundaries -> edges


## LP Relaxation

- $\mathcal{P}_{i}=$ all paths between $s_{i}$ and $t_{i} . \mathcal{P}=\bigcup_{i=1}^{k} \mathcal{P}_{i}$
- Exponential size relaxation: introduce a variable $x_{P}$ for every $P \in \mathcal{P}$

- Can be solved in polynomial time, and only poly-many $y_{P}$ are not 0

Computer Science
UNIVERSITY OF TORONTO

## Randomized Rounding

- Solve the LP to get optimal $y_{P}$, with value $L P=W$
- $\left\{y_{P}: P \in \mathcal{P}_{i}\right\}$ give a probability distribution over $\mathcal{P}_{i}$
s.t.
s.t.

$$
\begin{gathered}
\sum_{P \in \mathcal{P}: e \in P} y_{P} \leq W \quad \forall e \in E \\
\sum_{P \in \mathcal{P}_{i}} y_{P}=1 \quad \forall i \in[k] \\
y_{P} \geq 0 \quad \forall P \in \mathcal{P}
\end{gathered}
$$

- Independently for each $i \in[k]$ :
- Sample $P_{i} \in \mathcal{P}_{i}$ with probability $y_{P}$
- $Z_{e, i}=1 \Leftrightarrow e \in P_{i} . Z_{e}=\sum_{i=1}^{k} Z_{e, i}$ is the load on edge $e$
- $\mathbb{E}\left[Z_{e}\right]=\sum_{P \in \mathcal{P}: e \in P} y_{P} \leq L P \leq O P T$
- Theorem. With prob. $\geq \frac{1}{2}, \max _{e \in E} Z_{e}=O\left(\frac{\log n}{\log \log n}\right) \cdot O P T$
- Same calculation as Balls \& Bins, with $\mu=O P T \geq 1$.


## More on Multicommodity Flow

- Much better approximation if $L P$ (or $O P T$ ) is large
- E.g., if $L P \geq 10 \ln n$, then, with prob. $\geq 1 / 2$, randomized rounding finds a solution with value $\leq L P+\sqrt{10 L P \ln n}<2 L P$.
- Under an assumption slightly stronger than $P \neq N P$ (NP doesn't have randomized algorithms running in expected time $\left.n^{\log ^{O(1)} n}\right)$, the $O\left(\frac{\log n}{\log \log n}\right)$ approximation is best possible in the worst case.

