Chernoff Bounds

CSC 473 Advanced Algorithms

Variance and Chebyshev

- Let $X_1, ..., X_n \in \{0, 1\}$ be independent random variables
 - Not necessarily uniform or identically distributed

• Remember, for
$$X = \sum_{i=1}^{n} X_i$$
:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] \qquad Var(X) = \sum_{i=1}^{n} Var(X_i) \le \mathbb{E}[X]$$

• By Chebyshev's inequality:

$$\mathbb{P}(X \ge (1+\delta)\mathbb{E}[X]) \le \frac{Var(X)}{\delta^2\mathbb{E}[X]^2} \le \frac{1}{\delta^2\mathbb{E}[X]}$$

The Chernoff Bound

- Let X₁, ..., X_n ∈ {0,1} be independent random variables
 Not necessarily uniform or identically distributed
- Chernoff Bound: if $X = \sum_{i=1}^{n} X_i$ and $\mathbb{E}[X] \le \mu$ $\mathbb{P}(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)}\right)^{(1+\delta)\mu}$
- For $0 \le \delta \le 1$, the right hand side is $\le e^{-\delta^2 \mu/3}$
 - Compare with $\frac{1}{\delta^2 \mu}$ from Chebyshev.

Proof Idea

- "Chernoff trick": for any $t \ge 0$, by Markov's inequality $\mathbb{P}(X \ge (1+\delta)\mathbb{E}[X]) = \mathbb{P}(e^{tX} \ge e^{t(1+\delta)\mathbb{E}[X]}) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mathbb{E}[X]}}$
- By independence of X_1, \dots, X_n $\mathbb{E}[e^{tX}] = \mathbb{E}\left[e^{t(X_1 + \dots + X_n)}\right] = \mathbb{E}\left[\prod_{i=1}^n e^{tX_i}\right] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}]$ • Using $1 + z \le e^z$, $\mathbb{E}[e^{tX_i}] \le e^{\mathbb{E}[X_i](e^t - 1)}$, so $\mathbb{E}[e^{tX}] \le e^{\mathbb{E}[X](e^t - 1)}$
 - Choosing $t = \ln(1 + \delta)$ gives the best bound.

Balls and Bins

- Suppose we throw *n* balls into *n* bins
 - Each ball lands in a uniformly random bin, independently from the others
- **Theorem** With prob. $\geq \frac{1}{2}$, no bin has more than $O\left(\frac{\log n}{\log \log n}\right)$ balls
- $X_{ij} = 1 \Leftrightarrow \text{ball } j \text{ lands in bin } i. X_i = \sum_{j=1}^n X_{ij} \text{ number of balls in bin } i.$ • $\mathbb{E}[X_{ij}] = \mathbb{P}(X_{ij} = 1) = \frac{1}{n'}$, so $\mathbb{E}[X_i] = 1.$

• Chernoff:
$$\mathbb{P}\left(X_i \ge \frac{c \ln n}{\ln \ln n}\right) \le \frac{1}{2n}$$
 for all large enough c, n

• Use
$$\mu = 1$$
, $1 + \delta = \frac{c \ln n}{\ln \ln n}$. Then $\left(\frac{e^{\delta}}{(1+\delta)}\right)^{(1+\delta)} \approx e^{-c \ln n} = n^{-c}$
• Union bound: $\mathbb{P}\left(\exists i: X_i \ge \frac{c \ln n}{\ln \ln n}\right) \le n \cdot \frac{1}{2n} = \frac{1}{2}$

Multicommodity Flow Problem

- Motivation: given a chip with "wire channels", connect locations with wires, so that no channel is overloaded
- **Multicommodity Flow**: Given an undirected graph G = (V, E), and vertices $s_1 t_1, ..., s_k, t_k$, find paths P_i in G connecting s_i and t_i so that the maximum number of paths going through any edge is minimized.

Squares -> vertices

Boundaries -> edges

LP Relaxation

- \mathcal{P}_i = all paths between s_i and t_i . $\mathcal{P} = \bigcup_{i=1}^k \mathcal{P}_i$
- Exponential size relaxation: introduce a variable x_P for every $P \in \mathcal{P}$

• Can be solved in polynomial time, and only poly-many y_P are not 0

Randomized Rounding

- Solve the LP to get optimal y_P , with value LP = W
- $\{y_P: P \in \mathcal{P}_i\}$ give a probability distribution over \mathcal{P}_i^{\perp}
- Independently for each $i \in [k]$:
 - Sample $P_i \in \mathcal{P}_i$ with probability y_P
- $Z_{e,i} = 1 \Leftrightarrow e \in P_i$. $Z_e = \sum_{i=1}^k Z_{e,i}$ is the load on edge e
- $\mathbb{E}[Z_e] = \sum_{P \in \mathcal{P}: e \in P} y_P \le LP \le OPT$
- **Theorem.** With prob. $\geq \frac{1}{2}$, $\max_{e \in E} Z_e = O\left(\frac{\log n}{\log \log n}\right) \cdot OPT$
 - Same calculation as Balls & Bins, with $\mu = OPT \ge 1$.

Computer Science UNIVERSITY OF TORONTO

s.t.

$$\sum_{P \in \mathcal{P}: e \in P} y_P \leq W \quad \forall e \in E$$

$$\sum_{P \in \mathcal{P}_i} y_P = 1 \quad \forall i \in [k]$$

$$y_P \geq 0 \quad \forall P \in \mathcal{P}$$

More on Multicommodity Flow

- Much better approximation if *LP* (or *OPT*) is large
- E.g., if $LP \ge 10 \ln n$, then, with prob. $\ge 1/2$, randomized rounding finds a solution with value $\le LP + \sqrt{10 LP \ln n} < 2 LP$.
- Under an assumption slightly stronger than $P \neq NP$ (NP doesn't have randomized algorithms running in expected time $n^{\log^{O(1)} n}$), the $O\left(\frac{\log n}{\log \log n}\right)$ approximation is best possible in the worst case.

