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separately. We have seen in Section 13.6 that dictionaries have a very efficient
implementation using hashing, so abstracting out the dictionary operations
allows us to treat the hashing as a "black box" and have the algorithm inherit
an overall running time from whatever performance guarantee is satisfied by
this hashing procedure. A concrete payoff of this is the following. It has been
shown that with the right choice of hashing procedure (more powerful, and
more complicated, than what we described in Section 13.6), one can make the
underlying dictionary operations run in linear expected time as well, yielding
an overall expected running time of O(n). Thus the randomized approach we
describe here leads to an improvement over the running time of the divide-
and-conquer algorithm that we saw earlier. We will talk about the ideas that
lead to this O(n) bound at the end of the section.

It is worth remarking at the outset that randomization shows up for two
independent reasons in this algorithm: the way in which the algorithm pro-
cesses the input points will have a random component, regardless of how the
dictionary data structure is implemented; and when the dictionary is imple-
mented using hashing, this introduces an additional source of randomness as
part of the hash-table operations. Expressing the running time via the num-
ber of dictionary operations allows us to cleanly separate the two uses of
randomness.

~ The Problem
Let us start by recalling the problem’s (very simple) statement. We are given
n points in the plane, and we wish to find the pair that is closest together.
As discussed in Chapter 5, this is one of the most basic geometric proximity
problems, a topic with a wide range of applications.

We wil! use the same notation as in our earlier discussion of the closest-
pair problem. We wil! denote the set of points by P = [Pl ..... Pn}, where Pi
has coordinates (xi, y~); and for two points Pi, Pj E P, we use d(p~, pj) to denote
the standard Euclidean distance between them. Our goal is to find the pair of
points pi, pj that minimizes d(p~, pj).

To simplify the discussion, we wi!l assume that the points are al! in the
unit square: 0 < x~, y~ < 1 for all i = 1 ..... n. This is no loss of generality: in
linear time, we can rescale all the x- and y-coordinates of the points so that
they lie in a unit square, and .then we can translate them so that this unit
square has its lower left corner: at the origin.

L~ Designing the Algorithm
The basic idea of the algorithm is very simple. We’ll consider the points in
random order, and maintain a current value 3 for the closest pair as we process
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the points in this order. When we get to a new point p, we look "in the vicinity"
ofp to see if any of the previously considered points are at a distance less than
3 from p. If not, then the closest pair hasn’t changed, and we move on to the
next point in the random order. If there is a point within a distance less than
3 from p, then the closest pair has changed, and we will need to update it.

The challenge in turning this into an efficient algorithm is to figure out
how to implement the task of looking for points in the vicinity ofp. It is here
that the dictionary, data structure will come into play.

We now begin making this more concrete. Let us assume for simplicity that
the points in our random order are labeled Pl ..... Pn. The algorithm proceeds
in stages; during each stage, the closest pair remains constant. The first stage
starts by setting 3 = d(pl, P2), the distance of the first two points. The goal of
a stage is to either verify that 3 is indeed the distance of the closest pair of
points, or to find a pair of points Pi, Pj with d(Pi, pj) < 3. During a stage, we’ll
gradually add points in the order Pl, P2 ..... Pn. The stage terminates when
we reach a point Pi so that for some j < i, we have d(pi, pj) < 8. We then let 8
for the next stage be the closest distance found so far: 8 = min/:/<i d(pi, pj).

The number of stages used will depend on the random order. If we get
lucky, and Pl, P2 are the closest pair of points, then a single stage will do. It
is also possible to have as many as n - 2 stages, if adding a new point always
decreases the minimum distance. We’ll show that the expected running time
of the algorithm is within a constant factor of the time needed in the first,
lucky case, when the original value of 8 is the smallest distance.
Testing a Proposed Distance The main subroutine of the algorithm is a
method to test whether the current pair of points with distance 8 remains
the closest pair when a new point is added and, if not, to find the new closest
pair.

The idea of the verification is to subdivide the unit square (the area where
the points lie) into subsquares whose sides have length 8/2, as shown in
Figure !3.2. Formally, there will be N2 subsquares, where N--- [1/(28)]: for
0 < s < N - 1 and 1 < t < N - !, we define the subsquare Sst as

Sst = {(x, y) : s8/2 < x < (s + 1)8/2; t8/2 < y < (t + 1)8/2].

We claim that this collection of subsquares has two nice properties for our
purposes. First, any two points that lie in the same subsquare have distance
less than 8. Second, and a partial converse to this, any two points that are less
than 8 away from each other must fall in either the same subsquare or in very
close subsquares.

(13.26) If two points p and q belong to the same subsquare Sst, then
d(p,q) <8.
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Figure 13.2 Dividing the square into size $/2 subsquares. The point p lies in the
subsquare

Proof. If points p and q are in the same subsquare, then both coordinates Of
the two. points differ by at most 3/2, and hence d(p, q) <_ V~8/2)2 q- (3/2)2) =-
8/v~ < 3, as required. ,*

Next we say that subsquares Sst and Ss,t, are close if is- s’l _< 2 and
it - t’[ < 2. (Note that a subsquare is close to itself.)

(13.27) If for two points p, q ~ P we have d(p, q) < 3, then the subsquares
containing them are close.

Proof. Consider two points p, q ~ P belonging to subsquares that are not close;
assume p ~ Sst and q ~ Ss,t,, where one of s, s’ or t, t~ differs by more than 2. It
follows that in one of their respective x- or y-coordinates, p and q differ by at
least 3, and so we cannot have d(p, q) < 8. ,~

Note that for any subsquare Sst, the set of subsquares dose to it form a
S x 5 grid around it. Thus we conclude that there are at most 25 subsquares
close to Sst, counting Sst itself. (There will be fewer than 25 if Sst is at the edge
of the unit square containing the input points.)

Statements (13.26) and (13.27) suggest the basic outline of our algorithm.
Suppose that, at some point in the algorithm, we have proceeded partway
through the random order of the points and seen P’ _ P, and suppose that we
know the minimum distance among pomts in to be 3. For each of the points
in P’, we keep track of the subsquare containing it.
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Now, when the next point p is considered, we determine which of the
subsquares Sst it belongs to. If p is going to cause the minimum distance to
change, there must be some earlier point p’ ~ P’ at distance less than 8 from
it; and hence, by (13.27), the point p’ must be in one of the 25 squares around
the square Sst containing p. So we will simply check each of these 25 squares
one by one to see if it contains a point in P’; for each point in P’ that we find
this way, we compute its distance to p. By (13.26), each of these subsquares
contains at most one point of P’, so this is at most a constant number of distance
computations. (NOte that we used a similar idea, via (5. !0), at a crucial point
in the divide-and-conquer algorithm for this problem in Chapter 5.)

A Data Structure forMaintaining the Subsquares The high-level description
of the algorithm relies on being able to name a subsquare Sst and quickly
determine which points of P, if any, are contained in it. A dictionary is a
natural data structure for implementing such operations. The universe U of
possible elements is the set of all subsquares, and the set S maintained by the
data structure will be the subsquares that contain points from among the set
P’ that we’ve seen so far. Specifically, for each point p’ ~ P’ that we have seen
so far, we keep the subsquare containing it in the dictionary, tagged with the
index ofp’. We note that N2 = [!/(28)]2 wi!l, in general, be much larger than
n, the number of points. Thus we are in the type of situation considered in
Section 13.6 on hashing, where the universe of possible elements (the set of all
subsquares) is much larger than the number of elements being indexed (the
subsquares containing an input point seen thus far).

Now, when we consider the next pointp in the random order, we determine
the subsquare Sst containing it and perform a Lookup operation for each of
the 25 subsquares close to Sst. For any points discovered by these Lookup
operations, we compute the distance to p. If none of these distances are less
than 3, then the closest distance hasn’t changed; we insert Sst (tagged with p)
into the dictionary and proceed to the next point.

However, if we find a point p’ such that 8/ = d(p, pl) < 3, then we need
to update our closest pair. This updating is a rather dramatic activity: Since
the value of the closest pair has dropped from 8 to 8’, our entire collection of
subsquares, and the dictionary supporting it, has become useless--it was,
after all, designed only to be useful if the minimum distance was 3. We
therefore invoke ~IakeD±c~:±onary to create a new, empty dictionary that will
hold subsquares whose side lengths are 8’/2. For each point seen thus far, we
determine the subsquare containing it (in this new collection of subsquares),
and we insert this subsquare into the dictionary. Having done all this, we are
again ready to handle the next point in the random order.
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Summary off the Algorithm We have now actually described the algorithm
in full. To recap:

Order the points in a random sequence Pl,Pz ..... Pn
Let 8 denote the minimum distance found so far
Initialize 8 : d(Pl, P2)
Invoke MakeDictionarY for storing subsquares of side length
For i=I, 2 ..... n:

Determine the subsquare Sst containing Pi
Look up the 25 subsquares close to Pi
Compute the distance from Pi to any points found in these subsquares
If there is a point p] (]<i) such that 8’=d~i,pi) <8 then

Delete the current dictionary
Invoke MakeDictionarY for storing subsquares of side length 8’/2

For each of the points Pl,PZ,.",Pi:
Determine the subsquare of side length 8’/2 that contains it
Insert this subsquare into the new dictionary

End~ or
Else

Insert Pi into the current dictionary

Endif
Endfor

Analyzing the Algorithm
There are akeady some things we can say about the overall running time
of the algorithm. To consider a new point Pi, we need to perform only a
constant number of Lookup operations and a constant number of distance
computations. Moreover, even if we had to update the closest pair in every
iteration, we’d only do n MakeDictionaxy operations.

The missing ingredient is the total expected cost, over the course of the
algorithm’s execution, due to reinsertions into new dictionaries when the
closest pair is updated. We will consider this next. For now, we can at least
summarize the current state of our knowledge as follows.

(13128) The algorithm CorreCtly maintains the  IoseSt pair at all timesl and
it performs at most O(n) distance computations; O(n) Lookup operations;and
O(n) MakeDictionary operationsi

We now conclude the analysis by bounding the expected number of
Insert operations. Trying to find a good bound on the total expected number
of Insert operations seems a bit problematic at first: An update to the closest
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pair in iteration i will result in i insertions, and so each update comes at a high
cost once i gets large. Despite this, we will show the surprising fact that the
expected number of insertions is only O(n). The intuition here is that, even as
the cost of updates becomes steeper as the iterations proceed, these updates
become correspondingly less likely.

Let X be a random variable specifying the number of Insert operations
performed; the value of this random variable is determined by the random
order chosen at the outset. We are interested in bounding E IX], and as usual
in this type of sitffation, it is helpful tO break X down into a sum of simpler
random variables. Thus let Xi be a random variable equal to ! if the ith point
in the random order causes the minimum distance to change, and equal to 0
otherwise.

Using these random variables X~, we can write a simple formula for the
total number of Insert operations. Each point is inserted once when it is
first encountered; and i points need to be reinserted if the minimum distance
changes in iteration i. Thus we have the following claim.

(13.29) The total number of Insert operations performed by the algorithm
is n + ~,i iXi.

Now we bound the probability Pr [Xi = 1] that considering the ith point
causes the minimum distance to change.

(13.30) Vr [Xi = 1] _< 2/L

Proof. Consider the first i points Pl, P2 ..... pi in the random order. Assume
that the minimum distance among these points is achieved by p and q. Now
the point pi can only cause the minimum distance to decrease if pi = p or
Pi = q- Since the first i points are in a random order, any of them is equally
likely to be last, so the probability that p or q is last is 2/i. M

Note that 2/i is only an upper bound in (13.30) because there could be
multiple pairs among the first i points that define the same smallest distance.

By (13.29) and (13.30), we can bound the total number of Insert oper-
ations as

Ix] = n + i. [xi] _< n + 2n = 3n.
i

Combining this with (13.28), we obtain the following bound on the running
time of the algorithm.

(13.31} In expectation, the randomized closest-pair algorithm requires O(n)
time plus O(n) dictionary operations.
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Achieving Linear Expected Running Time
up to this point, we have treated the dictionary data structure as a black box,
and in 03.31) we bounded the running time of the algorithm in terms of
computational time plus dictionary operations. We now want to give a bound
on the actual expected running time, and so we need to analyze the work
involved in performing these dictionary operations.

To implement the dictionary, we’ll use a universal hashing scheme, like the
one discussed in Section 13.6. Once the algorithm employs a hashing scheme,
it is making use of randomness in two distinct ways: First, we randomly order
the points to be added; and second, for each new minimum distance 8, we
apply randomization to set up a new hash table using a universal hashing
scheme.

When inserting a new point Pi, the algorithm uses the hash-table Lookup
operation to find all nodes in the 25 subsquares close to Pi. However, if
the hash table has collisions, then these 25 Lookup operations can involve
inspecting many more than 25 nodes. Statement (13.23) from Section ,13.6
shows that each such Lookup operation involves considering O(1) previously
inserted points, in expectation. It seems intuitively clear that performing O(n)
hash-table operations in expectation, each of which involves considering O(1)
elements in expectation, will result in an expected running time of O(n) overall.
To make this intuition precise, we need to be careful with how these two
sources of randomness interact.

(15.52) Assume we implement the randomized closest-pair algorithm using a
universal hashing scheme. In expectation, the total number of points considered
during the Lookup operations is bounded by O(n).

Proof. From (13.31) we know that the expected number of Lookup operations
is O(n), and from (13.23) we know that each of these Lookup operations
involves considering only O(1) points in expectation. In order to conclude
that this implies the expected number of points considered is O(n), we now
consider the relationship between these two sources of randomness.

Let X be a random variable denoting the number of Lookup operations
performed by the algorithm. Now the random order a that the algorithm
chooses for the points completely determines the sequence of minimum-
distance values the algorithm will consider and the sequence of dictionary
operations it will perform. As a result, the choice of a determines the value

of X; we let X(a) denote this value, and we let ~a denote the event the
algorithm chooses the random order or. Note that the conditional expectation
E [X I ga] is equal to X(cr). Also, by (!3.31), we know that E [X] _< Con, for
some constant Co.
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Now consider this sequence of Lookup operations for a fixed order or. For
i = 1 ..... X(a), let Yi be the number of points that need to be inspected during
the ith Lookup operations--namely, the number of previously inserted points
that collide with the dictionary entry involved in this Lookup operation. We

V’x(~) Yi, where expectation is overwould like to bound the expected value of
both the random choice of a and the random choice of hash function.

By (13.23), we know that E [Y~ I g~] = O(1) for all cr and all values of i.
It is useful to be able to refer to the constant in the expression O(1) here, so
we will say that E [Yi I ~o] < cl for all cr and all values of i. Summing over all
i, and using linearity of expectation, we get E [~i Yi I ~a] --< clX(cr)- NOW we
have

= q ~ E [X I g~] . Pr [g~] = qE [X] .

Since we know that E [X] is at most con, the total expected number of points
considered is at most Coqn = O(n), which proves the claim. []

Armed with this claim, we can use the universal hash functions from
Section 13.6 in our closest-pair algorithm. In expectation, the algorithm will
consider O(n) points during the Lookup operations. We have to set up multiple
hash tables--a new one each time the minimum distance changes--and we
have to compute O(n) hash-function values. All hash tables are set up for
the same size, a prime p > n. We can select one prime and use the same
table throughout the algorithm. Using this, we get the following bound on the
runxfing time.

(13.33) In expectation, the algorithm uses O(n) hash-function computations
and O(n) additional time for finding the closest pair of points.

Note the distinction between this statement and (13.31). There we counted
each dictionary operation as a single, atomic step; here,, on the other hand,
we’ve conceptually opened up the dictionary operations so as to account for
the time incurred due to hash-table collisions and hash-function computations.

Finally, consider the time needed for the O(n) hash-function computations.
How fast is it to compute the value of a universal hash function h? The class
of universal hash functions developed in Section 13.6 breaks numbers in our
universe U into r ~ log N/log n smaller numbers of size O(log n) each, and
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then uses O(r) arithmetic operations on these smaller numbers to compute the
hash-function value. $o computing the hash value of a single point involves
O(log N/log n) multiplications, on numbers of size log n. This is a total of
O(n log N/log n) arithmetic operations over the course of the algorithm, more
than the O(n) we were hoping for.

In fact, it is possible to decrease the number of arithmetic operations to
O(n) by using a more sophisticated class of hash functions. There are other
classes of universal hash functions where computing the hash-function value
can be done by oniy 0(1) arithmetic operations (though these operations will
have to be done on larger numbers, integers of size roughly log N). This
class of improved hash functions also comes with one extra difficulty for
this application: the hashing scheme needs a prime that is bigger than the
size of the universe (rather than just the size of the set of points). Now the
universe in this application grows inversely with the minimum distance 3, and
so, in particular, it increases every time we discover a new, smaller minimum
distance. At such points, we will have to find a new prime and set up a new
hash table. Mthough we will not go into the details of this here, it is possible
to deal with these difficulties and make the algorithm achieve an expected
running time of O(n).

13.8 Randomized Caching
We now discuss the use of randomization for the caching problem, which we
first encountered in Chapter 4. We begin by developing a class of algorithms,
the marking algorithms, that include both deterministic and randomized ap-
proaches. After deriving a general performance guarantee that applies to all
marking algorithms, we show how a stronger guaraniee can be obtained for a
particular marking algorithm that exploits randomization.

/.~ The Problem
We begin by recalling the Cache Maintenance Problem from Chapter 4. In the
m~st basic setup, we consider a processor whose full memory has n addresses;
it is also equipped with a cache containing k slots of memory that can be
accessed very quickly. We can keep copies of k items from the full memory in
the cache slots, and when a memory location is accessed, the processor will
first check the cache to see if it can be quickly retrieved. We say the request
is a cache hit if the cache contains the requested item; in this case, the access
is very qnick. We say the request is a cache miss if the requested item is not
in the cache; in this case, the access takes much longer, and moreover, one
of the items currently in the cache must be evicted to make room for the new
item. (We will assume that the cache is kept full at all times.)
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The goal of a Cache Maintenance Algorithm is to minimize the number of
cache misses, which are the truly expensive part of the process. The sequence
of memory references is not under the control of the algorithm--this is simply
dictated by the application that is running--and so the job of the algorithms
we consider is simply to decide on an eviction policy: Which item currently in
the cache should be evicted on each cache miss?

In Chapter 4, we saw a greedy algorithm that is optimal for the problem:
Always evict the item that will be needed the farthest in the future. While this
algorithm is useful to have as an absolute benchmark on caching performance,
it clearly cannot be implemented under real operating conditions, since we
don’t know ahead of time when each item will be needed next. Rather, we need
to think about eviction policies that operate online, using only information
about past requests without knowledge of the future.

The eviction policy that is typically used in practice is to evict the item that
was used the least recently (i.e., whose most recent access was the longest ago
in the past); this is referred to as the Least-Recently-Used, or LRU, policy. The
empirical justification for LRU is that algorithms tend to have a certain locality
in accessing data, generally using the same set of data frequently for a while.
If a data item has not been accessed for a long time, this is a sign that it may
not be accessed again for a long time.

Here we will evaluate the performance of different eviction policies with-
out making any assumptions (such as locality) on the sequence of requests.
To do this, we will compare the number of misses made by an eviction policy
on a sequence a with the minimum number of misses it is possible to make
on a. We will use f(a) to denote this latter quantity; it is the number of misses
achieved by the optimal Farthest-in-Future policy. Comparing eviction policies
to the optimum is very much in the spirit of providing performance guaran-
tees for approximation algorithms, as we did in Chapter 11. Note, however, the
following interesting difference: the reason the optimum was not attainable in
our approximation analyses from that chapter (assuming ~P 7~ N:P) is that the
algorithms were constrained to run in polynomial time; here, on the other
hand, the eviction policies are constrained in their pursuit of the optimum by
the fact that they do not know the requests that are coming in the future.

For eviction policies operating under this online constraint, it initially
seems hopeless to say something interesting about their performance: Why
couldn’t we just design a request sequence that completely confounds any
online eviction policy? The surprising point here is that it is in fact possible to
give absolute guarantees on the performance of various online policies relative
to the optimum.

751


