T

742

Chapter 13 Randomized Algorithms

ately. We have seen in Section 13.6 that dictionaries 'ha've avery efﬁgg;l;
'SepalI en'tation using hashing, so abstracting out the dlctlonary' oper;h °
;II(I)’V:;H s to treat the hashing as a “black box” and have the algc')nth?S ;1 Edegy
overall running time from whatever performal'lce guaramefe is ia 111 ed by
attrllis hashing procedure. A concrete payoff of this is the following. It gﬂ een
shown that with the right choice of hashin'g procgdureﬂ (6more é)((:)av;fle; a}ée nd
re complicated, than what we described in Section 13. :), on e ing
I11111§)derlying dictionary operations run in linear expected tlme'f asd we r (})7; e
an overall expected running time of O(n). Thus the ran'doxg;; Oa}pt;;l o
describe here leads to an improvement 9ver the rum:lig e O s that
and-conquer algorithm that we saw earlier. We will talk a
lead to this O(n) bound at the end of the section. o e
It is worth remarking at the outset that rand(')nuzapcl)ln ﬂizogsoiﬁh o
independent reasons in this algorithm: the way 1n Wthe ardlesgs T
cesses the input points will have a random componenzil Iy gl et gl
dictionary data structure is implemented; anq .when e o e o
mented using hashing, this introduces an a}ddlnonal sm'nceﬁme n mness a5
art of the hash-table operations. Expressing the running e e
ger of dictionary operations allows us to cleanly separate the

randomness.

¥ The Problem |
ﬁI:t us start by recalling the problem’s (vgry simple? Stﬁtim:ggz:t ieggg:
n points in the plane, and we wish to find the pair t'a i O iy
As discussed in Chapter 5, this is one of th('E m'ost basic geo
problems, a topic with a wide range of applications. . ' .
We will use the same notation as in ou'r earlier discussion of t}hewch(;ie "
pair problem. We will denote the set (?f points by P = {pled(ppl,;) here ! é
has coordinates (x;, y;); and for two points p;, Pj € P, we 81115 * flm d, ot
the standard Euclidean distance bet)ween them. Our goal 1
oints p;, p; that minimizes d(p;, pj)- ' '
’ To sim;hfy the discussion, we will assume Fha.t the lpo;nct; azt; :rllah%nty tl:fl
unit square: 0 <x;,y; < 1lforalli=1,..., 1. Thls' is no osth g e
i i we can rescale all the x- and y-coordinates of the po ' !
il;l:}iulizl?lf ’a unit square, and then we can translate them so that this uni
square has its lower left corner:at the origin.

ﬁﬁ Designing the Algorithm , ider the points in
“The basic idea of the algorithm is very simple. We'll consider the b rocess
random order, and maintain a current value & for the closest pair as we p

13.7 Finding the Closest Pair of Points: A Randomized Approach

the points in this order. When we getto a new point p, we look “in the vicinity”
of p to see if any of the previously considered points are at a distance less than
é from p. If not, then the closest pair hasn’t changed, and we move on to the
next point in the random order. If there is a point within a distance less than
$ from p, then the closest pair has changed, and we will need to update it.

The challenge in turning this into an efficient algorithm is to figure out
how to implement the task of looking for points in the vicinity of p. It is here
that the dictionary data structure will come into play.

We now begin making this more concrete. Let us assume for simplicity that
the points in our random order are labeled D15 - - . s Dp- The algorithm proceeds
in stages; during each stage, the closest pair remains constant. The first stage
starts by setting § = d(p,, p,), the distance of the first two points. The goal of
a stage is to either verify that & is indeed the distance of the closest pair of
points, or to find a pair of points p;, p; with d(p;, pj) < 8. During a stage, we’ll
gradually add points in the order D1: Py, - ., Dp. The stage terminates when
we reach a point p; so that for some j < i, we have d(p;, pj) < 8. We then let &
for the next stage be the closest distance found so far: § — miny; ; d(p;, p))-

The number of stages used will depend on the random order. If we get
lucky, and p,, p, are the closest pair of points, then a single stage will do. It
is also possible to have as many as n — 2 stages, if adding a new point always
decreases the minimum distance. We’ll show that the expected running time
of the algorithm is within a constant factor of the time needed in the first,
lucky case, when the original value of § is the smallest distance.

Testing a Proposed Distance The main subroutine of the algorithm is a
method to test whether the current pair of points with distance § remains
the closest pair when a new point is added and, if not, to find the new closest
pair.

The idea of the verification is to subdivide the unit square (the area where
the points lie) into subsquares whose sides have length §/2, as shown in
Figure 13.2. Formally, there will be N2 subsquares, where N = [1/(28)]: for
0<s<N-1land 1<t <N -1, we define the subsquare S; as

Sse={(6,):58/2 <x < (s+ 1)§/2;t8/2 <y < (t + 1)8/2}.

We claim that this collection of subsquares has two nice prbperties for our
purposes. First, any two points that lie in the same subsquare have distance
less than 8. Second, and a partial converse to this, any two points that are less

than § away from each other must fall in either the same subsquare or in very
close subsquares.

(13.26) If two points p and q belong to the same subsquare Sg, then
d(,q) <3é.

743

s

Chapter 13 Randomized Algorithms

If p is involved in the closest

iﬁ/z pair, then the other point
o o lies in a close subsquare.
2
R
2 5/

i lies in the
Figure 13.2 Dividing the square into size 8/2 subsquares. The point p

subsquare Sg.

. !' Gf
f. If points p and g are in the same subsquare, then both coordinates ¢
of.

ine J@/2)*+ 6/2%) =

the two, points differ by at most 8/2, and hence d(p,q) =

§/+/2 < 8, as required. =
if |s—s'| <2 and
Next we say that subsquares Sg and 55.'1' are close if |s—s' =
it —t'| <2. (Note that a subsquare is close to itself.)
res
(13.27) If for two points p,q € P we have d(p, q) <$, then the subsqua
containing them are close.
elonging to subsquares that are not close;
fs.s ort,t differs by more than 2. It
or y-coordinates, p and q differ by at

Proof. Consider two pointsp,q € P b
assume p € Sg; and g € Sgys where fme 0
follows that in one of their respective X-
least 8, and so we cannot have dp,q) <8. &

it form a
t of subsquares close to 1t
that for any subsquare Sg, the se me
5 ;\I O;ied a?ound it. Thus we conclude that there are at m.ofs; 2§Ss;bt;ciue‘jge
chse fo S, counting Sy itself. (There will be fewer than 25if Sgp i
S ’ . .
i ining the input points.)
of the unit square containing ' . .
Statements (13.26) and (13.27) suggest the basic outline of milreec)llgoarrltway
Suppose that, at some point in the algorithm, W(? have pgo;:je Oseplhat i
thrlzmgh the random order of the points and seen P/ € P, and supp

know the minimum distance among poin n Pric
in P', we keep track of the subsquare containing it.

ts in P’ to be &. For each of the points

13.7 Finding the Closest Pair of Points: A Randomized Approach

Now, when the next point p is considered, we determine which of the
subsquares Sg, it belongs to. If p is going to cause the minimum distance to
change, there must be some earlier point p’ € P’ at distance less than § from
it; and hence, by (13.27), the point p’ must be in one of the 25 squares around
the square S,; containing p. So we will simply check each of these 25 squares
one by one to see if it contains a point in P’; for each point in P’ that we find
this way, we compute its distance to p. By (13.26), each of these subsquares
contains at most one point of P, so this is at most a constant number of distance
computations. (Note that we used a similar idea, via (5.10), at a crucial point
in the divide-and-conquer algorithm for this problem in Chapter 5.)

A Data Structure for Maintaining the Subsquares The high-level description
of the algorithm relies on being able to name a subsquare Sy, and quickly
determine which points of P, if any, are contained in it. A dictionary is a
natural data structure for implementing such operations. The universe U of
Dossible elements is the set of all subsquares, and the set S maintained by the
data structure will be the subsquares that contain points from among the set
P’ that we’ve seen so far, Specifically, for each point p’ € P’ that we have seen
so far, we keep the subsquare containing it in the dictionary, tagged with the
index of p’. We note that N2 = [1/(28)12 will, in general, be much larger than
n, the number of points. Thus we are in the type of situation considered in
Section 13.6 on hashing, where the universe of possible elements (the set of ail
subsquares) is much larger than the number of elements being indexed (the
subsquares containing an input point seen thus far).

Now, when we consider the next point p in the random order, we determine
the subsquare S, containing it and perform a Lookup operation for each of
the 25 subsquares close to S. For any points discovered by these Lookup
operations, we compute the distance to p. If none of these distances are less
than 8, then the closest distance hasn’t changed; we insert S, (tagged with p)
into the dictionary and proceed to the next point.

However, if we find a point p’ such that 8’ =d(p, p') < 8, then we need

to update our closest pair. This updating is a rather dramatic activity: Since
the value of the closest pair has dropped from § to &', our entire collection of
subsquares, and the dictionary supporting it, has become useless—it was,
after all, designed only to be useful if the minimum distance was 5. We
therefore invoke MakeDictionary to create a new, empty dicticnary that will
hold subsquares whose side lengths are 8'/2. For each point seen thus far, we
determine the subsquare containing it (in this new collection of subsquares),
and we insert this subsquare into the dictionary. Having done all this, we are
again ready to handle the next point in the random order.

745

-

746

Chapter 13 Randomized Algorithms

Summary of the Algorithm We have now actually described the algorithm

in full. To recap:

Order the points in a random sequence Py, P2, ---»Dn
Let § denote the minimum distance found so far
Tnitialize §=d(@i. P2)
Invoke MakeDictionary
For i=1,2,...,7 .
Determine the subsquare Sy containing pj
Look up the 25 subsquares close to p;

i ; to any p
ute the distance from p;
Comp (j <) such that 8’ =d(p;, pp <8 then

for storing subsquares of side length §8/2

oints found in these subsquares

1f there is a point pj
Delete the current dictionary . e
Tnvoke MakeDictionary for storing subsquares of side length &'/

i ... Pit
For each of the points Py, D2 . o
Determine the subsquare of side length &'/2 that contains

Tnsert this subsquare into the new dictionary

Endfor

Else o
Insert p; into the current dictionary

Endif
Endfor

/= Analyzing the Algorithm R
’There are already some things we call s‘ay about theec(JinZ o oy =
of the algorithm. To consider a new point p;, We net e etance
constant number of Lookup operations and a constéln e it i every
computations. Moreover, evell if we had to updat‘e e :
iteration, we’d only do n MakeDictionary operations.
The missing ingredient is the to
algorithm’s execution, due to reinsertl

closest pair is updated.

summarize the current state of our knowledge as follows.

(13 2".:8)' The algonthm ;brrectly maintains the closest pair at all ti
it performs at most O(n) distance computations,

‘O(n) MakeDictionary operations. o S

We now conclude the analysis b

Insert operations. Trying to ﬁn‘d a good '
of Tnsert operations seems a bit problematic

tal expected cost, over the course of the
ions into new dictionaries when the

We will consider this next. For now, we can at least

mes, and’
' O(n) Lookup operations, and

y bounding the expected number of
bound on the total expected number
at first: An update to the closest

13.7 Finding the Closest Pair of Points: A Randomized Approach

pair in iteration { will result in i insertions, and so each update comes at a high
cost once i gets large. Despite this, we will show the surprising fact that the
expected number of insertions is only O(n). The intuition here is that, even as

the cost of updates becomes steeper as the iterations proceed, these updates
become correspondingly less likely.

Let X be a random variable specifying the number of Insert operations
performed; the value of this random variable is determined by the random
order chosen at the outset. We are interested in bounding E [X], and as usual
in this type of situation, it is helpful to break X down into a sum of simpler
random variables. Thus let X; be a random variable equal to 1 if the ith point

in the random order causes the minimum distance to change, and equal to 0
otherwise.

Using these random variables X;, we can write a simple formula for the
total number of Insert operations. Each point is inserted once when it is
first encountered; and 7 points need to be reinserted if the minimum distance
changes in iteration i. Thus we have the following claim.

(13.29) The total number of Insert operations performed by the algorithm
isn + Zi LXl

Now we bound the probability Pr [X; = 1] that considering the i point
causes the minimum distance to change.

(13.30) Pr[X;=1] <2/i

Proof. Consider the first { points p;, p,, . .., p; in the random order. Assume
that the minimum distance among these points is achieved by p and q. Now
the point p; can only cause the minimum distance to decrease if pi=p oOr
p;=q. Since the first { points are in a random order, any of them is equally
likely to be last, so the probability that p or q is last is 2/i. =

Note that 2/i is only an upper bound in (13.30) because there could be
multiple pairs among the first i points that define the same smallest distance.

By (13.29) and (13.30), we can bound the total number of Insert oper-
ations as

EX]=n+) i-E[X]<n+2n=3n.
i

Combining this with (13.28), we obtain the following bound on the running
time of the algorithm.

(13.31) In expectation, the randomized closest-pair algorithm requires O(r1)

‘time plus O(n) dictionary operations.

747

e

748

Chapter 13 Randomized Algorithms

Achieving Linear Expected Running Time

Up to this point, we have treated the dictionary data structure as a black box,
and in (13.31) we bounded the running time of the algorithm in terms of
computational time plus dictionary operations. We oW want to give a bound
on the actual expected running time, and so we need to analyze the work
involved in performing these dictionary operations.

To implement the dictionary, we’'ll use a universal hashing scheme, like the
one discussed in Section 13.6. Once the algorithm employs a hashing scheme,
it is making use of randomness in two distinct ways: First, we randomly order
the points to be added; and second, for each new minimum distance 8, we
apply randomization to set up a new hash table using a universal hashing
scheme.

When inserting a new point p;, the algorithm uses the hash-table Lookup
operation to find all nodes in the 25 subsquares close to p;. However, if
the hash table has collisions, then these 25 Lookup operations can involve
inspecting many more than 25 nodes. Statement (13.23) from Section 13.6

shows that each such Lookup operation involves considering O(1) previously '

inserted points, in expectation. It seems intuitively clear that performing O(11)
hash-table operations in expectation, each of which involves considering (0]¢))]
elements in expectation, will result in an expected running time of O(n) overall.
To make this intuition precise, we need to be careful with how these two
sources of randomness interact.

(13.32) Assumewe implement the randomized closest-pair algorithm using a
universal hashing scheme. Int expectation, the total number of points considered
during the Lookup operations is bounded by O(11).

Proof. From (13.31) we know that the expected number of Lookup operations
is O(n), and from (13.23) we know that each of these Lookup pperations
involves considering only O(1) points in expectation. In order to conclude
that this implies the expected number of points considered is O(1), we oW
consider the relationship between these two sources of randomness.

Let X be a random variable denoting the number of Lookup operations
performed by the algorithm. Now the random order o that the algorithm
chooses for the points completely determines the sequence of minimum-
distance values the algorithm will consider and the sequence of dictionary
operations it will perform. As a result, the choice of o determines the value
of X; we let X(o) denote this value, and we let &, denote the event the
algorithm chooses the random order o. Note that the conditional expectation
E[X| ¢,] is equal to X(0). Also, by (13.31), we know that E [X]< con, for
some constant Cp.

13.7 Finding the Closest Pair of Points: A Randomized Approach

. 1Now c}c;r(ljx)dclartﬂ;s sequernce of Lookup operations for a fixed order o. For
= i;h. Lo ,o . ; eera;-i be the number of points that need to be inspected during
e o Withpth c?ns‘——namely, the number of previously inserted points

e dictionary entry involved in this Lookup operation. We

would like to bound the expected value of ZX(")
1 i

i1 Y;, where expectation is over

both the random choice of o and the random choice of hash function.

By (13.2 kn
Itis u};e(tc?)b’ W‘; ow that E[Y; | €,]=0(1) for all o and all values of i
ful e able to refer to the constant in the expression O(1) here sc;

we will
; an u:iay tiljat E [Yi | €,] <c, for all o and all values of i. Summing over all
, ng linearity of expectation, we get E [}; Y; | €,] < ¢,X (o). Now we

have
E|) Y|=) Pr[¢ .
E]-prteis[pue)
= Z Pr(&,]-ciX(o)

=c;) E[X|E,] Pr[&,]=cE[X].

Since ;
ConSideelgr.low that E [X] is at most cyn, the total expected number of points
is at most ¢yt = O(n), which proves the claim. =

Section f;GWilnthmtllrnil glalm, we can use the universal hash functions from
consider O(n) points d sestpair algorithm. In expectation, the algorithm will
hash tables—a news uring the 'Lookup operations. We have to set up multiple
have to compute O OneheaCh nme. the minimum distance changes—and we
the same siz (.n) ash-function values. All hash tables are set up for

e, a prime p>n. We can select one prime and use the same

table throughout the algorith i i
gt g m. Using this, we get the following bound on the

(13.33) In expectation, the j : SIS

; , the algorithm uses O(n) hash-functi m 1 '
o) o on comput

a’r”ld O(n)‘ addln0ﬁal time for finding the closest pair of points. o anons

eaCthcl)itCe t;(t)lsadlsUncnox} between 'this statement and (13.31). There we counied
cach diction 1371 acl)lperatlon as a smglc.e, atomic step; here, on the other hand
e <o D y opened up the dictionary operations so as to account fo;

incurred due to hash-table collisions and hash-function computations

HOWFg:tlliy; ictotr;smler the time needed for the O(n) hash-function computations.
s e s ;?;Ilpll'te the value of a universal hash function h? The class
o mersal Nncnons developed in Section 13.6 breaks numbers in our

into r ~ log N/ log n smaller numbers of size O(log) each, and

749

e

750

Chapter 13 Randomized Algorithms

then uses O(r) arithmetic operations on these smaller num'bers to c.ortnpxiltslvthe:
hash-function value. So computing the hash value of a single 'po?n 1Itl olves
O(log N/ logn) multiplications, on numbers of size log n. This is ﬂeimo 2o
O(nlogN/logmn) arithmetic operations over the course of the algorithm,
than the O(nn) we were hoping for. ' . .
In fact, it is possible to decrease the number of ant'hmetm operat;ogtsh tec;
O(n) by using a more sophisticated class of hash fun;uogs.f?;;inggn ome!
i i here computing the hash- :
classes of universal hash functions w (S
i i tions (though these opera
can be done by only O(1) arithmetic opera . O, This
bers, integers of size roughly g N).
have to be done on larger num ' o
i es with one extra ditncully
s of improved hash functions also com ' XIra
;1]&1‘: applicarj[Jion: the hashing scheme needs a prime that f1s b}gf;f g];l, ?;12
i iust the size of the set or pointsj.
ize of the universe (rather than just : et . c
fllniverse in this application grows inversely with the mimmum gﬁéizﬁ n(i;naélm
i i it i time we discover a new, sm :
so, in particular, it increases every ' ' e
’ i i d a new prime and set up
i _ At such points, we will have to fin ' : et ew
Sl?stﬁcaile Althoupgh we will not go into the details of this here, 1t 18 posm:g
) . . C
to deal with these difficulties and make the algorithm achieve an expe

running time of O(n).

13.8 Randomized Caching

We now discuss the use of randomization for the caghing plroblerfn;l:él;;lti I\HN:
i i begin by developing a class 0 : ,
first encountered in Chapter 4. We ping O o
[[include both deterministic and ran
the marking algorithms, that inc e
ivi narantee that applies
hes. After deriving a general performance guar .

fnr:jliing algorithms, we show how a stronger guar:?mte'e can be obtained for a
particular marking algorithm that exploits randomization.

<5 The Problem N
| e
fWe begin by recalling the Cache Maintenance Problem from Célapter ;drg e
A i i ssor whose full memory hasma ;
most basic setup, we consider a proce Y e
it is also equipped with a cache containing k slots of memorﬁs;ll th;; Hclzry o
accessed very quickly. We can keep copies of k'ltems from the e
the cache slots, and when a memory location is accessedi\)\t]he prot(lzl o st
i ’ if i be quickly retrieved. We say the
first check the cache to see if it can eee. e o e aceess
i it i ins the requested item; 111 111S , :
is a cache hit if the cache contains d i e e mo
i i st is a cache miss if the reque
is very quick. We say the reque o er, ont
i i takes much longer, an \
in the cache; in this case, the access ' o
t)f the items currently in the cache must be evicted to m'ake room for the nn
itemn. (We will assume that the cache is kept full at all times.)

13.8 Randomized Caching

The goal of a Cache Maintenance Algorithm is to minimize the number of
cache misses, which are the truly expensive part of the process. The sequence
of memory references is not under the control of the algorithm—this is simply
dictated by the application that is running—and so the job of the algorithms

we consider is simply to decide on an eviction policy: Which item currently in
the cache should be evicted on each cache miss?

In Chapter 4, we saw a greedy algorithm that is optimal for the problem:
Always evict the item that will be needed the farthest in the future. While this
algorithm is useful to have as an absolute benchmark on caching performance,
it clearly cannot be implemented under real operating conditions, since we
don’t know ahead of time when each item will be needed next. Rather, we need

to think about eviction policies that operate online, using only information
about past requests without knowledge of the future.

The eviction policy that is typically used in practice is to evict the item that
was used the least recently (i.e., whose most recent access was the longest ago
in the past); this is referred to as the Least-Recently-Used, or LRU, policy. The
empirical justification for LRU is that algorithms tend to have a certain locality
in accessing data, generally using the same set of data frequently for a while.

If a data itern has not been accessed for a long time, this is a sign that it may
not be accessed again for a long time.

Here we will evaluate the performance of different eviction policies with-
out making any assumptions (such as locality) on the sequence of requests.
To do this, we will compare the number of misses made by an eviction policy
on a sequence o with the minimum number of misses it is possible to make
on o. We will use f(o) to denote this latter quantity; it is the number of misses
achieved by the optimal Farthest-in-Future policy. Comparing eviction policies
to the optimum is very much in the spirit of providing performance guaran-
tees for approximation algorithms, as we did in Chapter 11. Note, however, the
following interesting difference: the reason the optimum was not attainable in-
our approximation analyses from that chapter (assuming P # NP) is that the
algorithms were constrained to run in polynomial time; here, on the other
hand, the eviction policies are constrained in their pursuit of the optimum by

the fact that they do not know the requests that are coming in the future.

For eviction policies operating under this online constraint, it initially
seems hopeless to say something interesting about their performance: Why
couldn’t we just design a request sequence that completely confounds any
online eviction policy? The surprising point here is that it is in fact possible to

give absolute guarantees on the performance of various online policies relative
to the optimum.

751

