
Linear Algebra Review Sheet

1 Basic Definitions

An m × n matrix A over R is a two-dimensional table of real numbers, with
rows indexed by [m] = {1, . . . ,m} and columns indexed by [n] = {1, . . . , n}:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

When m = n we say that A is a square matrix. In a square matrix, the
entries a11, a22, . . . , ann form the main diagonal, often just called the diagonal.
Sometimes we have the rows and columns of a matrix A be indexed by two
arbitrary sets S and T , and we denote the entry indexed by s ∈ S and t ∈ T by
ast.

The transpose B = Aᵀ of A is the n×m matrix given by bij = aji.
Special cases of matrices are the n× 1 matrices, called column vectors, and

1×n matrices, called row vectors. Sometimes we will just say “vector” without
specifying if it is a row or a column or row vector, when our discussion holds
for either. We usually denote row and column vectors by lowercase letters. The
space of all n-dimensional vectors is denoted by Rn.

The product C = AB of an m × n matrix A and an n × ` matrix B is an
m× ` matrix defined by

cij =

n∑
k=1

aikbkj .

Once again important special cases are when one of the matrices is a row or
a column vector. In particular, if x is an m-dimensional row vector, and y an
n-dimensional column vector, and A an m× n matrix, then

(xA)j =

n∑
i=1

xiaij , (Ay)i =

m∑
j=1

aijyj .

Above, xA is a row vector, and Ay is a column vector.
The matrix product in some ways behaves like the product of numbers: for

any three matrices A,B,C we have A(B + C) = AB + BC and (A + B)C =

1



AC + BC. However, it’s important to note that the matrix product does not
commute: in general AB does not have to equal BA. A special role is played
by the identity matrix I which is the n× n matrix that has 1’s on the diagonal
and 0’s everywhere else. For any m× n matrix A, AI = A, and for any n×m
matrix B, IB = B.

An n× n matrix A has an inverse (i.e. is invertible) if there exists an n× n
matrix B such that AB = BA = I, where I is the the n × n identity matrix.
The inverse of A, if it exists, is unique and is denoted by A−1. Not every matrix
has an inverse.

2 Linear Subspaces and Linear Independence

A linear subspace W of Rn is a subset of Rn such that:

1. For any c ∈ R, and any x ∈W , cx ∈W .

2. For any x, y ∈W , x + y ∈W .

A subspace W is spanned by the vectors x1, . . . , xk if any vector y ∈W can
be written as y = c1x1 + . . . + ckxk for some reals c1, . . . , ck.

A set of vectors {x1, . . . , xk} in Rn is linearly independent if c1x1+. . . ckxk =
0 implies that c1 = . . . = ck = 0. A basis of a subspace W is linearly indepen-
dent set of vectors {x1, . . . , xk} that spans W . Every subspace W has a basis.
All bases of W have the same cardinality, and we call this cardinality the di-
mension of W . In particular every basis of Rn has cardinality n. Every linearly
independent set of vectors in W is a subset of some basis of W , i.e. can be
completed to a basis.

Some important subspaces are associatd with an m × n matrix A. The
column space of A is the subspace of Rm spanned by the columns of A, and
the rowspace of A is the subspace of Rn spanned by the rows of A. The right
nullspace of A is the set of column vectors {x ∈ Rn : Ax = 0}, and the left
nullspace of A is the set of row vectors {x ∈ Rm : xA = 0}. When we say
nullspace without specifying if it is the left or the right nullspace, we refer to
the right nullspace.

3 Rank, Nullity, and Linear Systems of Equa-
tions

The rank of A, denoted rank A, equals the dimension of the column space of A.
Equivalently, it also equals the dimension of the row space of A. It also equals
the largest number of linearly independent columns of A, as well as the largest
number of linearly independent rows of A.

The nullity of A, denoted nul A, equals the dimension of the right nullspace
of A. Equivalently, it equals the cardinality of the largest set of linearly inde-
pendent column vectors x1, . . . , xk such that Axi = 0.
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The rank-nullity theorem says that for any m× n matrix

rank A + nul A = n.

Applying the theorem to the transpose of A we see that

rank A + nul Aᵀ = m.

Another fundamental result shows that an n× n matrix A has an inverse if
and only if nul A = 0, which happens if and only if rank A = n.

Finally, we consider a system of linear equations

a11x1 + . . . + a1nxn = b1,

a21x1 + . . . + a2nxn = b2,

...

am1x1 + . . . + amnxn = bm,

in the unknowns x1, . . . , xn. This system can be compactly encoded as Ax =
b. The following is a characterization of the solvability of such a system of
equations:

1. If nul A > 0 (or, equivalently, rank A < n), and b is in the column space
of A, then Ax = b has infinitely many solutions.

2. If nul A = 0 (or, equivalently, rank A = n), and b is in the column space
of A, then Ax = b has exactly one solution.

3. If b is not in the column space of A, then Ax = b has no solutions.

When m = n, and nul A = 0 (or, equivalently, rank A = n), the system Ax = b
has a unique solution for every b, and this solution is given by x = A−1b.
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