
CSC473: Advanced Algorithm Design Winter 2018

Weeks 4-5: Streaming and Parallel Algorithms

Aleksandar Nikolov

1 Motivation and Model

In the next few lectures we will study algorithms which are extremely efficient, in terms of space,
and usually in terms of time complexity as well. This is motivated by real-world scenarios in which
we want to process enormous amounts of data quickly. For example:

• A network service provider wants to keep track of the traffic going through the network, in
order to detect unusual patterns, which may be a sign of malicious activity. For example, an
increased traffic to a particular IP address may suggest a Denial of Service attack is under way.
Such unusual traffic patterns should be detected almost in real time, however the throughput
of the network is so large that it’s not feasible to store all the traffic data and analyze it.
So, you need a solution which works online (i.e. processes the traffic as it passes through the
routers), and accurately summarizes the data in a very concise “sketch.”

• Processing data in a very large database can be very expensive in terms of time. Often it’s
a good idea to quickly compute some rough statistics about the data before embarking on a
more expensive analysis. Because of its size, the database usually cannot be entirely loaded
into the computer memory, and most of it will be on a relatively slow hard disk. The fastest
way to process such a database is to do so sequentially, making only a few passes over the
data, as opposed jumping back and forth between different records. So, we are interested in
statistics which can be computed approximately in a few sequential passes over the data.

Scenarios like these motivate the simple and elegant streaming computation model, described below.
In the last week of the course we will see that the techniques we develop for streaming algorithms
will also be useful when designing algorithms that work on parallel systems.

In the streaming model, the algorithm A works in time steps, and receives one update per time
step. In the simplest version of the model, an update is just an integer in the set {1, . . . , n}, which
is meant as an identifier of some object. For example, the integer can encode an IP address. The
sequence of updates is called the stream. The total number of updates m is called the length of the
stream, and may or may not be explicitly given to the algorithm. After receiving an update, and
before receiving the next one, A updates is memory. Moreover, at any point during its execution,
the algorithm should be able to report an answer to a given question, e.g. report the number of
distinct integers seen so far. The crucial constraint is that, at any time step, the algorithm is only
allowed to store in its memory a number of bits which is bounded by a polynomial in log n and logm.
I.e. the algorithm’s memory may never exceed O(logc(nm)) bits, where c is some fixed constant,
say 1 or 2. This constraint models the fact that, in the applications we mentioned above, the size
of the data (corresponding to m), and the size of the universe it is coming from (corresponding to
n), are very large. While the model does not pose an explicit constraint on the running time, it’s
desirable that updates are as efficient as possible.

1

Often when we analyze algorithm in the streaming model, we count the number of words used by
the algorithm, where a word is a block of O(log(nm)) bits, which can store, e.g. a single variable,
or a single cell in an array. We will adopt this convention in these notes.

Many fundamental problems in the streaming model are conveniently summarized by the frequency
vector f , which gives the number of times each element of the universe appears in the stream. I.e. if
we have a stream σ = (i1, . . . , it) consisting of updates in {1, . . . , n}, then f ∈ Zn is defined by
fi = |{t : it = i}|. Note that the streaming algorithm will not actually store the frequency vector f ,
because that would require space linear in n. However, it helps to refer to the vector when defining
problems or analyzing algorithms.

In some versions of the model, updates can have a richer meaning. For example, in the turnstile
model, an update is a pair (i, s), where i ∈ {1, . . . , n}, and s ∈ {−1, 1}. As before, i is just an
identifier; s indicates “entering,” when s = +1, or “leaving,” when s = −1. For example, i can
identify a particular subway station, and s can indicate whether at the given time step a customer
has entered, or left the station. In the turnstile model we define the frequency vector f for a stream
σ = {(i1, s1), . . . , (im, sm)} by fi =

∑
t:it=i st.

Exercise 1. Suppose the stream has length n− 1, and consists of n− 1 of the integers {1, . . . , n}.
All updates are distinct, and the integers can appear in an arbitrary order. Design an algorithm
which makes a single pass over the data, keeps only a constant number of words of memory, and
finds the missing integer from the stream. Adapt your solution to finding two missing integers in a
stream of n− 2 distinct updates from {1, . . . , n}.

Exercise 2. Give an algorithm which samples a random element in a stream σ = (i1, . . . , im) of

updates in {1, . . . , n} so that the probability that element i is sampled equals |{t:it=i}|
m . The algorithm

should keep only a single variable, which at every time step is equal to the random sample from the
portion of the stream seen so far. Do not assume the algorithm knows the length of the stream.

2 Frequent Elements

It should be surprising to you that it is at all possible to do anything in the streaming model. Often
approximation and randomization are both absolutely necessary to solve a problem. We will start
with a rare example of a problem for which there are efficient deterministic algorithms.

As a warm-up, we consider the Majority problem. You are given a stream σ = (i1, . . . , im) of
updates in [n] = {1, . . . n}. If there exists an i ∈ [n] such that more than half the updates in σ are
equal to i, the algorithm should output i. If no such majority element exists, the algorithm can
output any element. (Notice that only one such element can exist.) The algorithm below (due to
Boyer and Moore) solves this problem with only two words of memory :

2

Majority(σ)

1 element = i1
2 count = 1
3 for t = 2 to m
4 if element == it
5 count = count + 1
6 elseif count > 0
7 count = count − 1
8 else element = it
9 count = 1

10 return element

Theorem 1. If there exists an element i such that more than half the updates in σ are equal to
i, then the Majority algorithm outputs i. Moreover, at any point during the execution of the
algorithm, felement ≤ count +m/2.

Proof. We group the updates in the stream in pairs as follows. At the start, we leave the first
update i1 unpaired and move to t = 2. If it = element , or if it 6= element but count = 0, we leave
the update it unpaired for now and move on to the next value of t. If it 6= element and count > 0,
we pair it with one of the prior updates is, s < t, for which is = element , and is is still unpaired.
Then we move on to the next value of t. The idea behind this pairing procedure is that we view the
event of count decreasing at time step t as it “taking away” one of the prior instances of element .

The following fact is easily shown by induction:

• At any time step t, count is equal to the number of yet unpaired updates equal to element .
For all j 6= element , all updates equal to j are paired.

Let i be as in the statement of the theorem. Observe that for every pair (is, it) we have is 6= it.
So, since there are at most m/2 pairs in the pairing, at most m/2 of the updates equal to i are
paired. This means that at least fi−m/2 > 0 updates equal to i are left unpaired at the end of the
execution of the algorithm. By the claim above, this means the final value of element returned by
the algorithm is i, and count ≥ fi −m/2. Notice that this also proves the claim after “moreover”
for the majority element i. If there is no majority element, that claim holds trivially.

If we want to also verify that the element i returned by the algorithm is a majority element, we
can just make a second pass over the stream and just count the number of occurrences of i.

Next we study a generalization of Majority which finds all elements that appear in more than
1/k fraction of the updates. This algorithm is due to Misra and Gries.

3

Frequent(σ, k)

1 S = ∅
2 for t = 1 to m
3 if ∃x ∈ S such that x.elem == it
4 x.count = x.count + 1
5 elseif |S| < k − 1
6 Create an element x with x.elem = it and x.count = 1
7 S = S ∪ x
8 else for x ∈ S
9 x.count = x.count − 1

10 if x.count == 0
11 S = S \ {x}
12 Return S

Theorem 2. The set S output by Frequent contains all i ∈ [n] such that fi > m/k. Moreover,
for any x ∈ S, fx.elem ≤ x.count +m/k.

Proof. We group the updates in the stream in groups of size k. Let us say that an element i ∈ [n]
is represented in S if there exists an x ∈ S such that x.elem = i. Starting from t = 1, we look at
the following cases:

1. If it is represented in S, we leave it ungrouped for now, and move to the next value of t.

2. Similarly, if it is not represented in S, but |S| < k − 1, we leave it ungrouped for now, and
move to the next value of t.

3. If it is not represented in S and |S| = k−1, then we group it with k−1 previously ungrouped
distinct updates represented in S. I.e. we find k− 1 updates, occurring at times s1, . . . , sk−1,
all preceding it and ungrouped, with the property that is1 , . . . , isk−1

are all distinct, and
represented in S. We group it with is1 , . . . , isk−1

and move to the next value of t.

It is easy to prove the following crucial claim by induction:

• At any time step t, for any x ∈ S, x.count is equal to the number of yet ungrouped updates
equal to x.elem. For all j ∈ [n] not represented in S, all updates equal to j are grouped.

Let i be such that fi > m/k. Observe that the groups are defined so that they contain distinct
elements of [n]. Because there can be at most m/k groups, at least fi −m/k > 0 updates equal
to i are left ungrouped. By the claim above, this means that i is represented in S, and that
x.count ≥ fi − m/k, where x ∈ S is such that x.elem = i. This also proves the claim after
“moreover” for all i such that fi > m/k. The claim is trivial for all other elements.

Notice that Frequent(σ, k) will output all elements with fi > m/k, but it may also output some
infrequent elements. To be sure which elements are have frequency greater than m/k, and which
do not, you need to make another pass over the stream.

4

Exercise 3. Show how to implement Frequent so that each update is as efficient as possible. What
data structure would you use to represent S in memory? What is the worst-case time complexity
of an update? What is the amortized time complexity of an update (i.e. the total time taken by the
algorithm, divided by m).

Exercise 4. Design an algorithm in the streaming model that, given values φ and ε such that
0 < ε < φ < 1, outputs a set S ⊆ [n] such that:

1. If i is such that fi > φm, then i ∈ S;

2. If i is such that fi < (φ− ε)m, then i 6∈ S.

Your algorithm should use O(1ε) words of memory.

3 Distinct Elements Count

In the distinct elements count problem we want to know how many distinct integers we have seen
in the stream so far. In terms of the frequency vector, we want to approximate F0 = |{i : fi > 0}|.
For this problem it turns out that we need to allow both approximation and randomization in order
to satisfy the constraints of the streaming model.

3.1 Warm-Up

We first give an algorithm which makes the (unrealistic) assumption that we know a number F̃0

such that
F0 ≤ F̃0 ≤ 2F0. (1)

Our goal in this case is to refine this “rough” estimate F̃0 to a much more precise one by processing
the stream. In the next subsection we will see how to remove this unrealistic assumption by building
on the ideas from this subsection.

The algorithm to refine the rough estimate F̃0 works by a simple sampling strategy:

Distinct-Simple(σ, k, F̃0)

1 S = ∅
2 d = dlog2(F̃0/k)e
3 L = dlog2 ne
4 Pick a hash function h : [n]→ {0, 1}L
5 for t = 1 to m
6 if h(it) ∈ 0d{0, 1}L−d and it 6∈ S
7 S = S ∪ {it}
8 return F̂0 = 2d · |S|

A few clarifications are in order. In the analysis we assume that h behaves like a random function.
I.e., we assume that h(1), . . . , h(n) are n independent random variables, uniformly distributed in
{0, 1}L. This is essentially the simple uniform hashing assumption you may remember from your

5

data structures course. The assumption can be removed using a construction similar to universal
hashing, and we discuss this a little bit later. We also clarify the notation: by h(it) ∈ 0d{0, 1}L−d
we simply mean that the leftmost d bits of h(it) are all 0.

So, in words, the algorithm works as follows: it uses the hash function to keep a set S which
contains each element that appears in the stream with probability 2−d. In expectation, S then
contains 2−d fraction of the elements that appear in the stream, so our estimate of the number of
distinct elements is 2d|S|. The value d is chosen so that the expected size of S is at most k: this is
the only place where we use F̃0; if we did not know such an estimate, we would not know how to
set d. There is a natural trade-off here: the larger we pick k (and, therefore, the smaller we pick
d), the more space our algorithm uses, but the more accurate its estimate becomes.

To analyze the algorithm, we will recall a basic concept from probability theory: variance. The
variance of a real-valued random variable X is defined as Var(X) = E[(X − E[X])2]. It measures
how much X deviates from its expectation on average. The following calculation is often very
useful:

Var(X) = E[(X − E[X])2] = E[X2 − 2X · E[X] + E[X]2]

= E[X2]− 2E[X]2 + E[X]2

= E[X2]− E[X]2.

A basic fact about variance is that the variance of the sum of independent random variables is
equal to the sum of their variances.

Proposition 3. Let X1, . . . , Xn be independent random variables, and let X =
∑n

i=1Xi. Then
Var(X) =

∑n
i=1 Var(Xi).

Proof. For simplicity, let us define new random variables Yi = Xi−E[Xi], and Y =
∑n

i=1 Yi. Notice
Y1, . . . , Yn are also independent, that Y = X − E[X], E[Yi] = 0 for all i, E[Y] = 0, and each of
Y, Y1, . . . , Yn has the same variance as X,X1, . . . , Xn, respectively. Then, it is enough to prove the
proposition for Y and Y1, . . . , Yn. We have:

Var(Y) = E[Y 2] = E[(Y1 + . . .+ Yn)2]

=
n∑

i=1

E[Y 2
i] +

∑
i 6=j

E[YiYj]

=

n∑
i=1

E[Y 2
i] +

∑
i 6=j

E[Yi]E[Yj]

=

n∑
i=1

E[Y 2
i] =

n∑
i=1

Var(Yi).

The third line above follows from the assumption that Yi and Yj are independent for each i 6= j.

The main reason variance is useful is that it gives us some control on how far a random variable
can be from its expectation. Let us first recall Markov’s inequality, proved in the lecture notes on
Locality Sensitive Hashing.

6

Theorem 4 (Markov’s Inequality). Let Z ≥ 0 be a random variable. Then, for any z > 0,

P(Z > z) <
E[Z]

z
.

We will use Markov’s inequality to prove Chebyshev’s inequality.

Theorem 5 (Chebyshev’s Inequality). Let X be a random variable. For any t > 0,

P(|X − E[X]| > t) <
Var(X)

t2
.

Proof. Define the random variable Z = (X − E[X])2. By definition, Z ≥ 0. Notice that Var(X) =
E[Z] and that

|X − E[X]| > t⇔ Z > t2.

Then, by Markov’s inequality,

P(|X − E[X]| > t) = P(Z > t2) <
Var(X)

t2
.

Notice that, unlike Markov’s inequality, Chebyshev’s inequality does not need to assume that the
random variable is non-negative. Moreover, Chebyshev’s inequality bounds the probability that
the random variable is far from its expectation in either direction.

Exercise 5. Give, for each value of t > 0, a random variable X so that E[X] = 0, Var(X) = 1,
and such that Chebyshev’s inequality holds with equality, i.e. P(|X − E[X]| ≥ t) = 1

t2
.

Exercise 6. Let X1, . . . , Xn be n random bits, where P(Xi = 1) = p. Assume that X1, . . . , Xn are
mutually independent. What is the variance of −X1 +X2 −X3 + . . .+ (−1)nXn?

Exercise 7. Suppose we roll a fair die n times, and let X be the sum of the numbers that appeared
over the n rolls. Use Chebyshev’s inequality to bound the probability that |X − 3.5n| > 0.5n.

Exercise 8. Let A[1 . . n] be an array of distinct integers. Recall that the rank of an integer x in
A equals r if and only if there are exactly r − 1 integers in A that are strictly smaller than x.

Consider k indexes i1, . . . , ik, sampled independently and uniformly at random with replacement
from {1, . . . , n}. Let ` be the number of integers in A[i1], . . . , A[ik], counted with repetition, that
have rank >

(
1
2 + ε

)
n. What is the expected value of ` (as a function of ε)? What is the variance

of `?

Use Chebyshev’s inequality to give an upper bound on the probability that the median of A[i1], . . . , A[ik]
has rank >

(
1
2 + ε

)
n in A.

Exercise 9. Given a permutation σ = σ1, . . . , σn of [n], let inv(σ) be the number of distinct pairs
i < j such that σi > σj. I.e. inv(σ) is the number of pairs of integers that are inverted in σ. If σ
is a uniformly random permutation of [n], then what is E[inv(σ)]? What is Var(inv(σ))?

Hint: Use the indicator random variables Xij, defined for any 1 ≤ i < j ≤ n, where Xij = 1
if σi > σj, and Xij = 0 otherwise. Compute E[Xij], and use this to calculate E[inv(σ)]. For
Var(inv(σ)), expand E[inv(σ)2] and compute the quantities

7

1. E[XijXk`] where i 6= k and j 6= `;

2. E[XijXi`] where j 6= `;

3. E[XijXj`];

4. E[X2
ij].

Use these expectations to compute E[inv(σ)2] and Var(inv(σ)).

We are now ready to analyze Distinct-Simple.

Theorem 6. If F̃0 satisfies (1), then with probability at least 1/2, the estimate F̂0 output by
Distinct-Simple(σ, F̃0, k) satisfies(

1−
√

8√
k

)
F0 ≤ F̂0 ≤

(
1 +

√
8√
k

)
F0.

Moreover, the algorithm uses at most O(k) words of memory in expectation.

Proof. Let D be the set of those i ∈ [n] that appear in the stream, i.e. D = {i : fi > 0}. By
this definition, F0 = |D|. For any i ∈ D, let Xi be the indicator random variable which equals 1
if i ∈ S, and 0 otherwise. We have E[Xi] = P(i ∈ S) = 2−d because h(i) is a uniformly random
string in {0, 1}L and exactly 2L−d out of all the 2L such strings have their d leftmost bits set to 0.
It follows that

E[|S|] = E

[∑
i∈D

Xi

]
=
∑
i∈D

P(i ∈ S) = 2−dF0.

Since F0 ≤ F̃0, and we chose d so that 2−dF̃0 ≤ k, we have E[|S|] = 2−dF0 ≤ 2−dF̃0 ≤ k. Since
storing S dominates the space usage of the algorithm, it follows that the algorithm uses at most
O(k) words of memory in expectation. It remains to analyze how close F̂0 is to F0.

It is easy to see that F̂0 equals F0 in expectation: E[F̂0] = E[2d|S|] = F0. However, this is not
enough to show that F̂0 is close to F0: a random variable could be very far from its expectation
with high probability. This is where Chebyshev’s inequality comes to the rescue: if we know that
the variance of F̂0 is small, then we know it is unlikely to be too far from its expectation.

Recall that we assumed h(1), . . . , h(n) are all independent, and, therefore, the random variables Xi

defined for each i ∈ D are also independent. By Proposition 3, it follows that

Var(|S|) = Var

(∑
i∈D

Xi

)
=
∑
i∈D

Var(Xi).

For any i ∈ D,
Var(Xi) = E[X2

i]− E[Xi]
2 ≤ E[X2

i] = E[Xi] = 2−d.

Here, we used the fact that E[Xi]
2 ≥ 0, and that X2

i = Xi because Xi ∈ {0, 1}. Plugging this into
the equation for Var(|S|), we get that Var(|S|) ≤ 2−dF0 = E[|S|].

8

We are ready to finish the proof. Let ε =
√
8√
k
. By Chebyshev’s inequality,

P(|F̂0 − F0| ≥ εF0) = P(|F̂0 − E[F̂0]| ≥ εE[F̂0])

= P(||S| − E[|S|]| ≥ εE[|S|])

≤ Var(|S|)
ε2E[|S|]2

≤ 1

ε2E[|S|]
.

I.e. if the expected size of S is not too small, we have a large probability of an accurate estimate.
(This makes intuitive sense: a large sample gives a better estimate.) By the choice of d we know
that 2d ≤ 2F̃0/k, which, after re-arranging, gives 2−dF̃ ≥ k/2. Therefore, by (1),

E[|S|] = 2−dF0 ≥ 2−d−1F̃0 ≥
k

4
.

Substituting into the expression we got from Chebyshev’s inequality, we have

P(|F̂0 − F0| ≥ εF0) ≤
4

ε2k
=

1

2
,

as we wanted.

Exercise 10. Use Exercise 8 to analyze the following algorithm: given input array A[1 . . n] of
distinct integers, the algorithm samples k indexes i1, . . . , ik independently and uniformly at random
with replacement from {1, . . . , n}. Then it computes and outputs the median X of A[i1], . . . , A[ik].
Show that if k ≥ 4

ε2
, then the output X of the of the algorithm has rank between

(
1
2 − ε

)
n and(

1
2 + ε

)
n in A with probability at least 1

2 .

3.2 Adaptive Sampling

Next we describe a single pass streaming algorithm for distinct counts which does not assume we
know an estimate F̂0. We describe one of the simpler solutions for this problem, known as Adaptive
Sampling, as the procedure Distinct.

Distinct(σ, k)

1 S = ∅
2 d = 0
3 L = dlog2 ne
4 Pick a hash function h : [n]→ {0, 1}L
5 for t = 1 to m
6 if h(it) ∈ 0d{0, 1}L−d and it 6∈ S
7 S = S ∪ {it}
8 while |S| > k
9 d = d+ 1

10 T = ∅
11 for j ∈ S
12 if h(j) ∈ 0d{0, 1}L−d
13 T = T ∪ {j}
14 S = T

15 return F̂0 = 2d · |S|

9

This algorithm is a variant of Distinct-Simple which sets the value d, and, consequently, the
sampling rate, adaptively. The algorithm keeps the invariant that |S| ≤ k, and, whenever S
exceeds size k, we increase d by 1, and drop, in expectation, half of its elements. At the end, we
expect S to hold about 2−dF0 elements, so we output 2d|S| as our estimate of F0. Notice that the
algorithm is guaranteed to use O(k) words of memory.

We are now ready to analyze Distinct. Warning: this is one of the more involved probabilistic
analyses you will see in this course, and it is somewhat heavy in calculations.

Theorem 7. Let k ≥ 144. With probability at least 1/2, the estimate F̂0 output by Distinct(σ, k)
satisfies (

1− 4√
k

)
F0 ≤ F̂0 ≤

(
1 +

4√
k

)
F0.

Proof. Let D be the set of those i ∈ [n] that appear in the stream, i.e. D = {i : fi > 0}. By this
definition, F0 = |D|. Let us define the sets S0, S1, . . . , SL by S` = {i ∈ D : h(i) ∈ 0`{0, 1}L−l}, and
observe that SL ⊆ SL−1 ⊆ . . . ⊆ S0 = D. It is easy to show that the final value of d computed by
Distinct equals min{` : |S`| ≤ k}, and the estimate output by the algorithm equals 2d|Sd|.

Using a calculation analogous to the one in Theorem 6, we get

E[|S`|] = 2−`F0,

Var(|S`|) ≤ 2−`F0 = E[|S`|].

Let ε = 4√
k
≤ 1

3 , and let a be the largest integer such that (1 − ε)2−aF0 > k, and let b be the

smallest integer such that (1 + ε)2−bF0 ≤ k. Verify that b ≥ a, and b − a ≤ 1 + log2
1+ε
1−ε ≤ 2,

i.e. b ∈ {a, a+ 1, a+ 2}.

Since E[|Sa|] = 2−aF0, we have, by Chebyshev’s inequality

P(|Sa| ≤ k) ≤ P(|Sa| < (1− ε)2−aF0)

= P(E[|Sa|]− |Sa| > εE[|Sa|])

<
Var(|Sa|)
ε2E[|Sa|]2

≤ 1

ε2E[|Sa|]
.

Since E[|Sa|] > k, and ε2 = 16
k , the right hand side is at most 1/16. By an analogous calculation:

P(
∣∣|Sb| − E[|Sb|]

∣∣ > ε2−bF0) = P(
∣∣|Sb| − E[|Sb|]

∣∣ > εE[|Sb|]) <
1

ε2E[|Sb|]
.

By the choice of b, (1 + ε)2−bF0 ≥ k/2 (or we would’ve chosen a smaller b), so E[|Sb|] = 2−bF0 ≥
3k/8. Since ε2 = 16

k , the right hand side of the inequality above is at most 1/6. Another analogous
calculation shows that, if b = a+ 2, then

P(
∣∣|Sb−1| − E[|Sb−1|]

∣∣ > ε2−b+1F0) <
1

6
.

By the union bound, with probability at least 1− 1/6− 1/6− 1/16 > 1/2, we have

|Sa| > k,∣∣|Sb−1| − E[|Sb−1|]
∣∣ ≤ ε2−b+1F0,∣∣|Sb| − E[|Sb|]
∣∣ ≤ ε2−bF0.

10

The last inequality and the choice of b imply that |Sb| ≤ k. Therefore, at the end of the execution of
the algorithm, d = b or d = b−1, and the algorithm outputs the estimate F̂0 ∈ {2b−1|Sb−1|, 2b|Sb|}.
If F̂0 = 2b−1|Sb−1|, we have ∣∣F̂0 − F0

∣∣ = 2b−1
∣∣|Sb−1| − E[|Sb−1|]

∣∣ ≤ εF0.

Analogously, if F̂0 = 2b|Sb|, we have∣∣F̂0 − F0

∣∣ = 2b
∣∣|Sb| − E[|Sb|]

∣∣ ≤ εF0.

This completes the proof of the theorem.

The constants in the proof are not chosen to be the tightest possible, but rather to make the
calculations relatively painless. Another way to state the result we proved is that, using Distinct,
we can approximate F0 up to a factor 1± ε using O(1

ε2
) words of memory, or, equivalently, O(logn

ε2
)

bits of memory. More sophisticated algorithms are known which use O(1
ε2

+ log n) bits of memory;
this latter bound is the best possible in the worst case.

Exercise 11. The theorem above does not show any guarantee when k = 1. Prove that there
exists a constant C, independent of n, m or the stream, so that if F̂0 is the estimate output by
Distinct(σ, 1), then, with probability at least 1/2,

1

C
F0 ≤ F̂0 ≤ CF0

Let us finally make a remark about making the assumptions on the hash function in the algorithm
more realistic. Carefully checking the calculation in Proposition 3 shows that it is enough if the
random variables X1, . . . , Xn are pairwise independent, i.e. if for every i 6= j and every two values x,
x′, we have P(Xi = x,Xj = x′) = P(Xi = x)P(Xj = x′). (This is not the same as full independence:
take for example X1 and X2 to be independent and uniform in {0, 1}, and take X3 to be the XOR
of X1 and X2.)

This observation inspires the following definition, which is closely related to the definition of a
universal hashing family.

Definition 8. A family H of functions from [n] to {0, 1}L is a pairwise independent hash family
if for all i, j ∈ [n], i 6= j, and for any two bit-strings x, x′ ∈ {0, 1}L, we have

P(h(i) = x, h(j) = x′) =
1

22L
,

where the probability is taken over picking a uniformly random h ∈ H.

A pairwise independent hash family is also a universal family, but not necessarily the other way
around. Using a little bit of algebra, it is easy to construct pairwise independent hash family of
size 22L = O(n2). Picking a random function from this family requires only picking 2L = O(log n)
random bits, and, moreover, the value of the hash function on any element of [n] can be quickly
computed from the random bits. So, in Distinct we will take h to be a random function from such
a pairwise independent hash family. This will only increase our space complexity by a constant
number of words, and will not affect the correctness guarantees of the algorithm, because in the
analysis we only used pairwise independence.

11

4 Parallel Algorithms

4.1 The Model

In this section we explore another computational model which addresses the challenges of processing
big data. We still consider a setting in which the data we want to process is too large to fit on a
machine. However, we are going to assume that we possess a cluster of many machines: enough
so that the total space on them fits all our data, and potentially slightly more than that. For
concreteness, let us say that the input data is a set of n integers, we have

√
n machines, and

each of them can keep O(
√
n) integers in its local storage. Assume that the input starts out

partitioned arbitrarily among the machines. Each machine can compute on the part of the input
in its local storage. Since no machine sees the entire input, we cannot hope to solve even very
simple problems, unless we allow the machines to exchange messages. However, communication
between the machines is usually slow: sending data over a network is much slower than internal
computation. For this reason, we will try to design algorithms that process all the data with as
little communication between the machines as possible.

Let us describe the model more formally. Assume that the size of the input is n (measured, for
example, in words of memory). We have m machines, and each of them has local storage of s
words of memory. We assume that ms = Ω(n), and sometimes even allow for ms = Ω(n1+ε) for
some relatively small constant ε > 0. The input starts out partitioned arbitrarily between the
m machines. The computation proceeds in rounds. In a single round, each machine can execute
any polynomial time algorithm on its local storage. Once all machines have finished their local
computation, they are allowed to exchange messages. All machines simultaneously send messages
to the other machines (assume the machines are numbered). The total size of the messages sent or
received by a machine must not exceed s. Once the messages are exchanged, the round is complete.
In the next round the local storage of each machine contains the union of the messages it received
in the previous round together with the contents of its local storage from the previous round. We
have the constraint that the local storage of any machine must not exceed s at any time. To satisfy
this constraint, a machine can discard information from its local storage during the algorithm. Our
main goal is to complete the entire computation in as few rounds as possible, preferably a constant
number of rounds.

This model is an abstraction and simplification of real-world systems like MapReduce and Hadoop.
The point here is not to perfectly model the actual systems, just like the point of the RAM model is
not to be a perfect model of a physical computer. Our goal instead is to have a model which is simple
enough to allow us to analyze our algorithms, and yet captures some of the algorithmic challenges
of designing algorithms for parallel systems. We should note that there are other theoretical models
of parallel computation, like the various flavors of the PRAM, and the BSP model of Valiant. The
model above can be seen as a simplification of BSP.

4.2 Simple Algorithms

First a warm-up exercise.

Exercise 12. Give a parallel algorithm which finds the maximum and the sum of n integers in a
constant number of rounds when s = m = Θ(

√
n). At the end, one specially designated machine

must have the output written in its local memory.

12

Now let us look at something a bit more interesting: the prefix sums problem. Our input is n pairs
of integers, (1, x1), . . . , (n, xn), and our goal is to compute, for all 1 ≤ i ≤ n, the sum x1+. . . , xi. We
assume we have s = m = Θ(

√
n). Notice that no machine has enough space for the entire output,

so we will be satisfied having the different pieces of the output stored on different machines, as long
as some prefix sum is stored by some machine.

A standard algorithm is as follows:

1. Exchange messages so that (1, x1), . . . , (
√
n, x√n) are stored on the first machine, (

√
n +

1, x√n+1), . . . , (2
√
n, x2

√
n) on the second machine, etc.

2. In the next round, the i-th machine computes x(i−1)
√
n+1 + . . . + xj for all (i − 1)

√
n + 1 ≤

j ≤ i
√
n. Moreover, the i-th machine sends to all machines numbered higher than itself the

sum of all integers in its local memory.

3. In the next and final round, the local storage of the i-th machine contains the sums of the
integers on machines 1, . . . , i − 1. It can add up these sums to get x1 + . . . + x(i−1)

√
n.

The local storage of the i-th machine also contains the sums x(i−1)
√
n+1 + . . . + xj for all

(i−1)
√
n+1 ≤ j ≤ i

√
n from the previous round. From these, the i-th machine can compute

the prefix sums x1 + . . .+ xj for all (i− 1)
√
n+ 1 ≤ j ≤ i

√
n.

An illustrative example is shown in Figure 1.

(1, 5) (4, 1)

(2, 2)

Machine 1 Machine 2 Machine 3

(8, 3)

(3, 9) (9, 0)

(7, 7)

(5, 8) (6, 10)

Machine 1 Machine 2 Machine 3

Round 1

5, 7, 16 1, 9, 19 7, 10, 10 Round 2

Machine 1 Machine 2 Machine 316
16 19

5, 7, 16 17, 25, 35 42, 45, 45 Round 3

Local sums Local sums Local sums

Final sums Final sums Final sums

Figure 1: An example of the prefix sums algorithm.

Exercise 13. Suppose the input is a weighted graph G on n nodes and Θ(n2) edges. Assume that
s = Θ(n3/2) and m = Θ(n). Initially, each machine has n edges of the graph in its local storage,
where each edge is represented as a pair of vertices with a weight. Give a parallel algorithm that
computes the minimum spanning tree of G in a constant number of rounds.

13

4.3 Using Streaming Algorithms in Parallel

Many streaming algorithms can be turned into parallel algorithms without much effort. For ex-
ample, suppose that our input is a sequence σ = (σ1, . . . , σn) of n integers, which could possibly
repeat. Each of our m = Θ(

√
n) machines has Θ(

√
n) integers from σ. We want to estimate the

number of distinct integers in σ.

We show how to use the adaptive sampling algorithm Distinct to achieve this goal. First one
machine samples a random hash function and sends it to all other machines: this way all machines
use the same hash function. (This can be done in two rounds: see how?) Then, we run
Distinct on each machine with parameter k = Θ(1

ε2
), and once machine i has processed its input,

it can send the set of at most k elements S(i) computed by Distinct on its local input, together
with the final value d(i) of d used to compute S(i), to a specially designated machine, say the first
one. (To make sure the notation is clear, we point out that S(i) is the set of integers on the i-th
machine whose hash value given by h starts with d(i) 0’s, and d(i) is chosen so that |S(i)| ≤ k.) As
long as ε is a constant, the total number of words sent to the first machine is O(ε−2m) = O(

√
n),

and does not exceed the storage requirement.

It remains for the first machine to finish the computation. We claim that it can exactly simulate
the Distinct algorithm when run on the entire sequence σ. Recall from the proof of Theorem 7
the notation D for the set of distinct integers in σ, and the sets S` = {i : h(i) ∈ 0`{0, 1}L−l}.
Recall further that the final value of d computed by Distinct equals min{` : |S`| ≤ k}, and the
estimate output by the algorithm equals 2d|Sd|. Observe that for any ` ≥ max{d(1), . . . , d(m)},
S` ⊆ S(1) ∪ . . . ∪ S(m), and, moreover, that d ≥ max{d(1), . . . , d(m)}. So, the first machine can
just go over the different possible values for d, from max{d(1), . . . , d(m)} to L, and check for each
one whether |Sd| ≤ k. The smallest d for which this is true gives us our desired output 2d|Sd|.
Since we already proved in Theorem 7 that Distinct computed an estimate which is within a
(1± ε) multiplicative factor from the true number of distinct elements, we now also have a parallel
algorithm with the same guarantee.

Exercise 14. Show how to use a constant number of additional rounds of computation to refine
the approximation factor above from (1± ε) to (1± C√

s
), for a constant C.

5 Impossibility Results

When designing algorithms it is useful to also be aware of impossibility results, which tell you
what algorithmic problems are in fact solvable. You have seen some examples of this: there is
no algorithm that takes an arbitrary program and input and decides if the program halts on that
input; there is no comparison-based sorting algorithm that makes o(n log n) comparisons; there is
no algorithm that computes the minimum vertex cover of an arbitrary graph, unless P = NP. Next
we will discuss similar impossibility results in the streaming model. Unlike the results above, we
will focus on space lower bounds. We will see that various assumptions we had to make above were
necessary: if we drop them, then we need Ω(n) bits of space to solve our problem.

One frustrating aspect of the Majority algorithm above is that we cannot be sure whether the
element output by the algorithm actually is a majority element or not, unless we do a second pass
over the stream. A natural question is whether there is a small space algorithm in the streaming

14

model which can detect if a majority element exists in the stream. Our first impossibility result
shows that this is impossible.

Theorem 9. Any deterministic algorithm in the streaming model which decides whether a given
stream σ has a majority element, i.e. an element i such that fi >

m
2 , must use Ω(n) bits of space.

The key to proving Theorem 9 is to think about a simple communication game. In this game, Alice
has an object X from some large set X . She wants to send a single message M to Bob, who has to
use M to decode X. Alice and Bob can only communicate once: Alice sends M to Bob, and that’s
it. How short can the message M be, in the worst case?

More formally, Alice gets an input X ∈ X and sends to Bob a message M(X) ∈ {0, 1}∗ (i.e. M is a
function that maps X to strings of bits). Then Bob outputs D(M), where D is some function that
maps strings of bits to X . It must be the case that D(M(X)) = X, otherwise Bob doesn’t decode
the message correctly.

Lemma 10. In the game above, there must exist some X ∈ X such that M(X) has length at least
dlog2 |X |e bits.

Proof. Let M = {M(X) : X ∈ X} be the set of all possible messages sent by Alice. Suppose
towards contradiction that every message in M were of length at most L < dlog2 |X |e bits. Then
|M| ≤ 2L < |X |, so, by the pigeonhole principle, there must exist two different X,Y ∈ X for which
M(X) = M(Y). This means that X = D(M(X)) = D(M(Y)) = Y , which is a contradiction.

Note that Lemma 10 holds no matter what X is. All we use about X is its size.

We can now deduce Theorem 9 from Lemma 10 by showing that we could use a streaming algorithm
to come up with M and D in the communication game above.

Proof of Theorem 9. Let A be a streaming algorithm that, on every stream σ uses at most s bits
of memory in the worst case and decides if the stream has a majority element or not. We will
use A to design M and D for the Alice and Bob communication game. We will take X to be the
powerset of [n], i.e. the set of all possible subsets of [n]. Notice that |X | = 2n. On input a subset
X of [n], Alice constructs a partial stream σ′ whose updates consist of the elements of X listed in
some arbitrary order. She feeds σ′ to A, and after A is done processing σ′, she sends the contents
of the memory of A to Bob together with the size of X: this is her message M(X). Notice that
the length of M(X) is s + blog2(n + 1)c: s bits to encode the memory, and blog2(n + 1)c bits to
encode the size of X.

To decode the message, Bob constructs n streams σ′′1 , . . . , σ
′′
n, where σ′′i consists of |X| copies of i.

Then, for each i, Bob restarts the execution of A with the memory contents he received from Alice,
and feeds it σ′′i . At the end of the stream, A will be able to decide if the stream σ = (σ′, σ′′i) has a
majority element. Notice that this happens if and only if i ∈ X. After doing this for every i ∈ [n],
Bob learns exactly the elements of X, as required by the communication game. An illustration of
this construction is given in Figure 2.

By Lemma 10, we have that the size of the message sent by Alice must be at least n in the worst
case. I.e. we have s+ blog2(n+ 1)c ≥ n, which implies s = Ω(n).

15

X = {1, 7, 11, 25}

1 7 11 25σ′

1 1 1 1

2 2 2 2

...

25252525

σ′′
1

σ′′
2

σ′′
25

yes

no

yes

Figure 2: An illustration of the proof of Theorem 9. The ”yes” and ”no” labels on the far right
indicate whether there is a majority element.

There is a subtlety in this proof: it is crucial that Bob can use the memory contents of A many
times, by feeding different streams of updates to the algorithm. This is where we used the fact
that A processes the updates in the stream one by one: because of this we can stop A at any time
and use its memory to check what the algorithm would do if the stream is continued in different
possible ways.

Exercise 15. Use the same technique to show that an algorithm which outputs an element i if
fi > m/2, but does not output i if fi < m/4, must use at least Ω(log n) bits of memory.

This technique can be used for many problems. Next we use it to show that a streaming algorithm
for the distinct element count problem cannot be both deterministic and exact (and use small
space).

Theorem 11. Any deterministic algorithm in the streaming model which computes exactly the
number of distinct elements F0 in a given stream σ must use Ω(n) bits of space.

Proof. Assume again that A is a streaming algorithm that, on every stream σ uses at most s bits
of memory in the worst case and exactly computes F0. The reduction we use is almost the same
as in the proof of Theorem 9. Let again X be the powerset of [n]. Given a subset X of [n], Alice
constructs σ′ and her message M(X) in the exact same way as in the proof of Theorem 9. What
is different is Bob’s decoding procedure. Bob once again constructs streams σ′′1 , . . . , σ

′′
n, but this

time σ′′i consists of just a single copy of i. If i ∈ X, then F0 = |X|; otherwise, F0 = |X| + 1. So,
by restarting the execution of A using the memory contents he received from Alice, and, for each i
separately, feeding the additional update σ′′i to A, and getting F0 returned by the algorithm, Bob
can decide, for each i ∈ [n], whether i ∈ X. This allows Bob to reconstruct X.

By Lemma 10, we have, as before, that s+ blog2(n+ 1)c ≥ n, i.e. s = Ω(n).

Our algorithm for estimating F0 is both approximate and randomized. Is it possible to have a
deterministic approximation algorithm for F0? It turns out that it is not, but to show this, we will
need an additional lemma.

Lemma 12. There exists a collection X of subsets of [n] such that log2 |X | = Ω(n), and for any
two distinct X,Y ∈ X we have |Y \X| ≥ n

8 .

16

We will omit the proof of this lemma here, because it goes beyond the scope of these lecture notes.
(Just to be clear, there is nothing special about the number 8, and it can be replaced by any other
number less than 4 at the cost of changing the hidden constant in the Ω() notation.) Using the
lemma, however, we will prove the following theorem.

Theorem 13. Any deterministic algorithm in the streaming model which, given a stream σ with
F0 distinct elements, computes a number F̂0 satisfying

F0 ≤ F̂0 <
9

8
F0

must use Ω(n) bits of space.

Proof. Assume that A is a streaming algorithm that satisfies the assumption of the theorem and
uses at most s bits of memory in the worst case. For the reduction, this time we choose X to be
the collection of subsets of [n] from Lemma 12. Given X ∈ X , Alice constructs her message M(X)
in the exact same way as in the proof of Theorem 11. Once again, the difference will be in how
Bob decodes her message. For every Y ∈ X , Bob creates a stream σ′′Y consisting of the elements
of Y in some arbitrary order; then, he restarts the execution of A with the memory contents he
received from Alice, and feeds σ′′Y to A. The stream (σ′, σ′′Y) has exactly |X ∪ Y | = |X|+ |Y \X|
distinct elements. If Y = X, then F0 = |X ∪ Y | = |X|, so the value F̂0 returned by A satisfies
F̂0 <

9
8F0 = 9

8 |X|. If Y 6= X, then F0 = |X ∪ Y | ≥ |X| + n
8 ≥

9
8 |X|, and, therefore, we have

F̂0 ≥ F0 ≥ 9
8 |X|. Therefore, Bob can decide whether X = Y by comparing the approximation F̂0

returned by the algorithm to 9
8 |X|. By doing this for every Y ∈ X , Bob can find X.

By Lemma 10, we have that s+blog2(n+1)c ≥ cn, where c is a constant. This implies s = Ω(n).

17

