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Week 5: Random Walks and Markov Chains

Aleksandar Nikolov

1 The Simple Random Walk

Suppose we are given a directed graph G = (Ω, E). You have studied a number of different ways
to explore such a graph, for example Breadth and Depth First Search. There is, however, another,
arguably even simpler, way to explore a graph: randomly wander around it, at each step picking a
random edge to follow out of the current vertex. I.e. you could run the following algorithm:

Random-Walk(G, x0)

1 X0 = x0

2 for t = 1 to ∞
3 Set Xt to a uniformly random y such that (Xt−1, y) ∈ E

The sequence of visited vertices X0, X1, . . . is called the simple random walk in G. As an illustration,
see Figure 1 which shows two instances of 100 steps of a simple random walk on a regular grid
graph. (The grid graph is undirected, which we take to be equivalent as having an edge in each
direction for any two neighboring points.)

Figure 1: Two random walks on a 10 by 10 grid graph.

In a way this is the most minimalist way to explore a graph: to run the algorithm, you don’t even
need to remember the nodes that you have already visited, just the current node where you are.
Despite this simplicity, random walks have many algorithmic applications: low-space algorithms
to decide if a graph is connected; the PageRank algorithm used by Google to rank web pages;
algorithms to sample from very complex distributions, often used in machine learning; algorithms
to compute matchings efficiently, and more. In most applications, what we are really interested in
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is the the distribution of Xt for a very large t. This distribution can provide valuable information
about the structure of the graph, or be an interesting distribution in itself from which we are trying
to draw a sample.

In these lecture notes we look at a broad generalization of the simple random walk, called Markov
Chains. We prove their most fundamental property: that (under some conditions), the distribution
of the Xt gets closer and closer to a unique distribution on the nodes of the graph which is inde-
pendent of the starting distribution. We also look at some applications: Page Rank and sampling
using the Markov Chain Monte Carlo method

2 Markov Chains

The random walk (X0, X1, . . .) above is an example of a discrete stochastic process. One easy
generalization is to add a weight Px,y > 0 to any edge (x, y) of the directed graph G = (Ω, E) and
choose the next vertex not uniformly at random from the out-neighbors of the current one, but
with probability proportional to the weight of the edge. I.e if we normalize the weights so that for
any node x,

∑
y:(x,y)∈E Px,y = 1, then we can modify the process to

General-Walk(P, x0)

1 X0 = x
2 for t = 1 to ∞
3 Choose Xt to equal y with probability PXt−1,y.

Above, P is the matrix that encodes the weights, called transition probabilities: it has one row and
one column for every vertex in Ω, and the entry for row x and column y is Px,y if (x, y) ∈ E, and 0
otherwise. The matrix P is called the transition matrix. It has the property that all its entries are
non-negative, and the sum of entries in every row equals 1. Such a matrix is called (row)-stochastic.
Clearly, this matrix entirely defines the graph G: the edges of G correspond to non-zero entries
in P . Note that we allow the graph G to have self-loops, i.e. edges that go from x back to x, or,
equivalently, we allow Px,x > 0. This corresponds to allowing the random process to stay at the
current vertex x with probability Px,x.

As you can see from the pseudocode, the process (X0, X1, . . .) is defined by X0 = x0 and

P(Xt = y | Xt−1 = x,Xt−2 = xt−2 . . . , X0 = x0) = P(Xt = y | Xt−1 = x) = Px,y. (1)

In other words, the next step in the process depends only on the current state. Such a process is
called a Markov chain. The set of “vertices” Ω is called the state space, and the vertices themselves
are called states.

More generally, the starting state X0 does not have to be fixed, and can be random itself. Suppose
that the distribution of X0 is given by a vector p, with entries indexed by Ω, i.e. P(X0 = x) = px.
Then, by the law of total probability,

P(X1 = y) =
∑
x∈Ω

P(X1 = y | X0 = x) · P(X0 = x) =
∑
x∈Ω

Px,ypx = (pP )y.

Above, p is treated as a row vector, i.e. a matrix with one row and |Ω| columns indexed by Ω, and
(pP )y simply means qy where q = pP is the vector-matrix product of p and P . Since the probability
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distribution of X2 only depends on X1, and the distribution of X1 is given by pP , we have that the
distribution of X2 is given by (pP )P = p(PP ) = pP 2. Going like this by induction, we have the
distribution of Xt is given by pP t, where P t is the t-th power of P . If we look at the special case
where p puts all its mass on x, i.e. px = 1 and px′ = 0 for all x′ 6= x, then we have

P(Xt = y | X0 = x) = (P t)x,y.

In general we will use the notation P t
x,y to denote (P t)x,y, i.e. the x, y entry of the matrix P t,

rather than the t-th power of the number Px,y. We will also identify a row vector p ∈ RΩ with
non-negative entries summing up to 1 with the probability distribution given by P(x) = px.

The equation (1) intuitively means that a Markov chain has no memory: it only remembers the last
state it has visited, and forgets it as soon as it moves to the next state. This suggests that, as t gets
large, the probability distribution of Xt should depend less and less on the starting state x0. This
is often true, but there are some caveats. Consider for example the two Markov chains represented
in Figure 2. In the left Markov chain, if we start in one of the states denoted by lower case letters,
then we will always stay among them, and similarly for the upper case letters. In the right one, if
we start at state X0 = a, then at every even time t we will have Xt ∈ {a, b}, and Xt+1 ∈ {A,B};
if we start at X0 = A, then the opposite is true. So, if we want to claim that Markov chains truly
forget their past, we must add further conditions on them.
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Figure 2: Two Markov chains that do not forget their starting states.

The following two definitions are the main properties that we will need.

Definition 1. A Markov chain with transition matrix P is called irreducible if for all states x, y ∈
Ω, there exists a t such that P(Xt = y | X0 = x) = P t

x,y > 0. Equivalently, the graph G represented
by P is strongly connected.

Definition 2. A Markov chain with transition matrix P is called aperiodic if for all states x ∈ Ω
we have that the greatest common divisor of {t ≥ 1 : P(Xt = x | X0 = x) = P t

x,x > 0} is 1.

The left chain in Figure 2 fails to be irreducible: for example P(Xt = A | X0 = a) is 0 for all t.
The right chain in the figure fails to be aperiodic: the times t such that P(Xt = a | X0 = a) > 0
are all even, so their greatest common divisor is at least 2.

The following exercises should get you a little more comfortable with the notion of being aperiodic.

Exercise 1. Suppose that P represents an irreducible Markov chain with a graph G which has at
least one self-loop. Show that the Markov chain is aperiodic.
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Exercise 2. Suppose that the graph G represented by P is symmetric, i.e. if (x, y) ∈ E, then
(y, x) ∈ E as well. Prove that if G is connected and contains an odd-length cycle, then it is
aperiodic.

Note: The undirected graph G = (V,E) that have no odd-length cycle are exactly the bipartite
graphs: those whose vertices V can be partitioned into two sets U and W such that all edges go
between U and W . So, this exercise says that if we take an undirected non-bipartite graph, and
replace each of its edges by two directed edges in each direction, then any Markov chain on the
resulting graph is aperiodic.

Exercise 3. Suppose that P represents an irreducible Markov chain. Define the period of x ∈ Ω
by gcd{t : P(Xt = x | X0 = x) > 0}. Show that the period of every x is the same.

Exercise 4. Show that if P represents an irreducible aperiodic Markov chain, then there exists a
positive integer t0 such that for all t ≥ t0, and all x, y ∈ Ω, P t

x,y > 0.

Hint: First show that if the condition holds for x = y, then it also holds for all x, y (by maybe
taking a slightly larger t0). Then, to show the condition for x = y, you can use the following fact
from elementary number theory. Let S = {s1, . . . , sN} be a set of positive integers whose greatest
common divisor is 1. Then there exists a positive integer t0 such that all integers t ≥ t0 can be
written as t =

∑N
i=1 aisi for some non-negative integers ai.

If a Markov chain is irreducible and aperiodic, then it is truly forgetful. This is formalized by the
fundamental theorem of Markov chains, stated next. First, however, we give one last important
definition.

Definition 3. A probability distribution π is stationary for a Markov chain with transition matrix
P if πP = π. In other words, π is stationary if, when the distribution of X0 is given by P(X0 =
x) = πx, then the distribution of X1 is also given by P(X1 = x) = πx.

Exercise 5. Suppose that G is a directed graph such that if (x, y) ∈ E, then (y, x) ∈ E as well. Let
dx be the out-degree of x in G, and let m be the number of edges in G (where (x, y) and (y, x) are
counted as two different edges). Show that π given by πx = dx

m is stationary for the simple random
walk in G.

Theorem 4 (Fundamental Theorem). For every irreducible and aperiodic Markov chain with
transition matrix P , there exists a unique stationary distribution π. Moreover, for all x, y ∈ Ω,
P t
x,y → πy as t → ∞. Equivalently, for every starting point X0 = x, P(Xt = y | X0 = x) → πy as
t→∞.

As already hinted, most applications of Markov chains have to do with the stationary distribution
π. Sometimes π gives valuable information about the graph G represented by P . Other times, we
want to sample from some complicated distribution π on a huge state space Ω. For example, we
may want to sample a uniformly random matching in a graph H = (VH , EH)1. However, the set
Ω of such matchings is usually exponentially large in the size of H. Instead of writing down all
possible matchings of H, which would take exponential time and space, we design a Markov chain
on Ω such that the uniform distribution π on Ω is stationary for the chain. We never actually write
down the transition matrix P (which is also exponentially large), but we make sure that given a

1A matching in a graph is a set of edges that do not share any vertices.
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state (i.e. matching) x, we can quickly sample the next state. Then we simply run the Markov
chain, starting from some arbitrary starting state, for long enough so that the distribution of Xt

gets close to π. This will eventually happen by Theorem 4. Of course, we also want to know how
fast we converge to the stationary distribution. This depends a lot on the Markov chain and can
be a very difficult question in general. While this example with matchings is mostly theoretical,
the same strategy is applied very frequently in statistics and machine learning to sample from
complicated distributions, and in physics to simulate complex processes. This is called the Markov
Chain Monte Carlo (MCMC) method.

Our chief goal in the rest of the notes is to prove Theorem 4 and to give some idea about its
applications.

3 Existence of Stationary Distributions

Before we prove Theorem 4, let us argue that stationary distributions in fact exist. Let us first
consider the easy, but important, special case of time reversible Markov chains.

Definition 5. A Markov chain with transition matrix P is reversible if there exists a probability
distribution over Ω given by a vector π, such that

πxPx,y = πyPy,x. (2)

Note that, in particular, this implies that the graph G represented by P is symmetric.

Exercise 6. Let x0, . . . , xt be a sequence of states. Prove that in a time-reversible Markov chain,

πx0P(X1 = x1, . . . , Xt = xt | X0 = x) = πxtP(X1 = xt−1, . . . , Xt = x0 | X0 = xt).

This is why such chains are called time-reversible: reversing time gives a Markov chain with the
same transition probabilities.

Exercise 7. Consider a Markov chain on the integers Ω = {1, . . . n} with transition probabilities

Pi,i+1 = p 1 ≤ i ≤ n− 1,

Pi,i−1 = 1− p 2 ≤ i ≤ n,

and P1,1 = 1 − p, Pn,n = p. Show that this Markov chain is time-reversible, and give a π that
satisfies (2).

Lemma 6. If P defines a time-reversible Markov chain, and π satisfies (2), then π is a stationary
distribution for P .

Proof. By (2),

(πP )y =
∑
x∈Ω

πxPx,y =
∑
x∈Ω

πyPy,x = πy
∑
x∈Ω

Py,x = πy,

with the final inequality holding true because P is a stochastic matrix.

Many chains we consider in practice are time-reversible, which is useful, since the condition (2) is
usually easy to verify. Note also that Exercise 5 is a special case of Lemma 6, where πx = dx

m .
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Lemma 7. Any irreducible Markov chain has a stationary distribution.

Proof Sketch. Suppose the transition matrix is P , and let’s start the Markov chain at some arbitrary
state x. Let T be the first (random) time after t = 0 when XT = x again. Because the chain is
irreducible, we can show that E[T ] <∞: we omit the technical details, but you can try to fill them
in as an exercise. Define a vector q indexed by Ω by qx = 1 and, for any y 6= x,

qy = E[ |{1 ≤ t ≤ T : Xt = y}| ].

I.e. qy is the expected number of times the Markov chain, when started at x, visits y before returning
to x. Then we claim that qP = q. If we can prove that, we can just set πy = qy/(

∑
z∈Ω qz) for any

y ∈ Ω, and we have found our stationary distribution.

Let us then prove qP = q. Let Zy,t be 1 if Xt = y and t ≤ T and 0 otherwise. Then, the number
of times y is visited before returning to x is Zy =

∑∞
t=1 Zy,t. By linearity of expectation,

qy = E[Zy] =
∞∑
t=1

E[Zy,t] =
∞∑
t=1

P(Xt = y, t ≤ T ). (3)

Note that t ≤ T simply means that none of X1, . . . , Xt−1 is x. Then, by the definition of the
Markov chain, we have

∞∑
t=1

P(Xt = y, t ≤ T ) =

∞∑
t=1

∑
z∈Ω

P(Xt−1 = z, t ≤ T )Pz,y = Px,y +

∞∑
t=2

∑
z 6=x

P(Xt−1 = z, t− 1 ≤ T )Pz,y.

(4)
where in the second equality we used the fact that X0 = x with probability 1, and the observation
that 2 ≤ t ≤ T is the same as t− 1 ≤ T and Xt−1 6= z. Since qx = 1, and by a change of variables,
we have

Px,y +

∞∑
t=2

∑
z 6=x

P(Xt−1 = z, t− 1 ≤ T )Pz,y = qxPx,y +

∞∑
t=1

∑
z 6=x

P(Xt = z, t ≤ T )Pz,y

= qxPx,y +
∑
z 6=x

Pz,y

∞∑
t=1

P(Xt = z, t ≤ T )

=
∑
z∈Ω

qzPz,y = (qP )y.

In the second equality, we just changed the order of summation,2 and in the third we used (3).
Combining with this sequence of equalities with (3) and (4), we get that qy = (qP )y.

4 Couplings

It will be convenient to have a measure of the distance between two probability distribution. A
very natural such distance is the total variation distance. Given two random variables X and Y ,

2Actually, this step and the use of the linearity of expectation in (3) require further justification, because we
are dealing with infinite sums. Rigorously proving that these two steps are ok requires the dominated convergence
theorem, and Fubini’s theorem, respectively. This is where we need E[T ] < ∞.
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taking values in the same finite set Ω, their total variation distance is

dtv(X,Y ) = max
S⊆Ω
|P(X ∈ S)− P(Y ∈ S)|.

I.e. this is the biggest difference in the probability assigned to any set by the distribution of X and
the distribution of Y . When the total variation distance of X and Y is very small, we can treat
the two random variables as being the same for all intents and purposes.

Exercise 8. Suppose that the probability distribution of X is given by the vector p, and the distri-
bution of Y is given by the vector q. Prove that

dtv(X,Y ) =
1

2

∑
x∈Ω

|px − qx|.

Hint: Consider the set S = {x ∈ Ω : px ≥ qx} and its complement.

It turns out that the total variation distance is closely related to another central notion in probability
theory: that of a coupling.

Definition 8. A coupling of two random variables X and Y taking values in Ω is a random variable
Z = (Z1, Z2) taking values in Ω× Ω, such that Z1 has the same probability distribution as X, and
Z2 has the same probability distribution as Y . I.e. for any x, y ∈ Ω:

P(X = x) =
∑
z∈Ω

P(Z1 = x, Z2 = z)

P(Y = y) =
∑
z∈Ω

P(Z1 = z, Z2 = y).

As an example, consider X which is distributed uniformly in {1, 2, 3}, and Y which has equal
probability to be 1 or 2, but is never 3. One possible coupling Z is given in the following table,
where rows indicate values for Z1, and columns values for Z2, and each entry is the probability of
the corresponding pair of values.

Z1 \Z2 1 2 3

1 1/6 1/6 0

2 1/6 1/6 0

3 1/6 1/6 0

This coupling corresponds to taking independent copies of X and Y , respectively, as Z1 and Z2.
I.e. we take P(Z1 = x, Z2 = y) = P(X = x) · P(Y = y). However, we could also first pick Z2 to
be uniform in {1, 2}, and then, with probability 2/3, pick Z1 = Z2, and with probability 1/3 pick
Z1 = 3. This corresponds to the probabilities in the following table.

Z1 \Z2 1 2 3

1 1/3 0 0

2 0 1/3 0

3 1/6 1/6 0

Usually we do not explicitly write Z but instead just say there is a coupling (X,Y ) of X and Y ,
or that we have coupled X and Y , and write just X instead of Z1 and Y instead of Z2.

The following lemma is the key connection between couplings and total variation distance.
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Lemma 9. Two random variables X and Y taking values in a finite set Ω have dtv(X,Y ) ≤ α if
and only if there exists a coupling (X,Y ) such that P(X 6= Y ) ≤ α.

Proof. We will prove only the “if” direction, leaving the “only if” as an exercise. Suppose we have
coupled X and Y such that P(X 6= Y ) ≤ α. For any set S ⊂ Ω, we have

P(X ∈ S) = P(X ∈ S,X = Y ) + P(X ∈ S,X 6= Y )

= P(Y ∈ S,X = Y ) + P(X ∈ S | X 6= Y )P(X 6= Y )

≤ P(Y ∈ S,X = Y ) + α ≤ P(Y ∈ S) + α.

By the exact same reasoning, P(Y ∈ S) ≤ P(X ∈ S) + α. This finishes the proof.

Exercise 9. Prove the “only if” direction of Lemma 9.

5 Proof of the Fundamental Theorem

We are now ready to prove the fundamental theorem. We will show the following lemma.

Lemma 10. Suppose that X = (X0, X1, . . .) and Y = (Y0, Y1, . . .) are two instances of an irre-
ducible aperiodic Markov chain, where X0 and Y0 are allowed to be random and to have different
distributions. We can couple X and Y so that P(Xt 6= Yt)→ 0 as t→∞.

Let us first see why this proves the theorem. By Lemma 7 there exists a stationary distribution π.
Let’s take X0 = x, and take Y0 to be distributed according to π. Then the coupling of X and Y
gives also a coupling of Xt and Yt for any t, and, by Lemmas 9 and 10,

dtv(Xt, Yt) ≤ P(Xt 6= Yt) −−−→
t→∞

0.

By the definition of tv-distance, this means that |P(Xt = y) − P(Yt = y)| goes to 0 with t going
to infinity. But remember that Y0 is distributed according to the stationary distribution π, so Yt
is also distributed according to π, and P(Xt = y) − πy| goes to 0 with t, as we want. Uniqueness
follows because, if there were two stationary distributions, π and π′, then we could take X0 to be
distributed according to π, and Y0 to be distributed according to π′, and, by the above reasoning,
we would get that, for all y ∈ Ω,

|πy − π′y| = |P(Xt = y)− P(Yt = y)| −−−→
t→∞

0.

But the left hand side is independent of t, so |πy − π′y| = 0 for all y ∈ Ω, i.e. π = π′.

It then remains to prove the Lemma 10.

Proof of Lemma 10. Let us couple Xt and Yt so that, initially, X0 and Y0 are independent, and Xt

and Yt stay independent, and evolve according to the Markov chain, until the first (random) time
T when XT = YT . Then, for any t ≥ T , we make Xt and Yt stay the same, i.e. we enforce Xt = Yt
for t ≥ T , but we otherwise evolve them according to the Markov chain. You should verify that
this is indeed a valid coupling of X and Y .
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Let us take another coupling of Xt and Yt, and call it (X ′t, Y
′
t ), in which (X ′0, Y

′
0) has the same

distribution as (X0, Y0), but X ′t and Y ′t stay independent forever. Then, (Xt, Yt) is distributed like
(X ′t, Y

′
t ) until the first moment T when Xt = Yt; after that moment, Xt and Yt stay “glued”, while

X ′t and Y ′t continue independently. Observe that

P(Xt 6= Yt) = P(∀s ≤ t : X ′s 6= Y ′s ).

Our goal then is to show that
P(∀s ≤ t : X ′s 6= Y ′s ) −−−→

t→∞
0.

Suppose that X ′0 (and X0) has a distribution given by the vector p, and Y ′0 (and Y0) has one given
by q. Let P be the transition matrix of the Markov chain. Then the distribution of X ′t is given
by pP t, and that of Y ′t is given by qP t. By Exercise 4, there exists a positive integer t0 such that
P t
x,y > 0 for all x and y and all t ≥ t0. Then, it must be the case that all entries of the vectors pP t

and qP t are strictly positive for all t ≥ t0. Combining this with the independence of X ′t0 and Y ′t0 ,
we get

P(X ′t0 = Y ′t0) =
∑
x∈Ω

P(X ′t0 = x, Y ′t0 = x)

=
∑
x∈Ω

P(X ′t0 = x)P(Y ′t0 = x) =
∑
x∈Ω

(pP t0)x(qP t0)x > 0.

Taking complements, we get P(X ′t0 6= Y ′t0) < 1. Let c < 1 be the maximum of P(X ′t0 6= Y ′t0) over all
starting distributions p and q. (As an exercise, convince yourself that this maximum is achieved
for p and q that put all their probability mass, respectively, on single states x and y.) Then, if
X ′s 6= Y ′s for all s ≤ t, it must be true that X ′t0 6= Y ′t0 , and X ′2t0 6= Y ′2t0 , X ′3t0 6= Y ′3t0 , etc. We have

P(X ′2t0 6= Y ′2t0 | X
′
t0 6= Y ′t0) ≤ c,

because we can treat X ′2t0 conditioned on X ′t0 6= Y ′t0 as the distribution of the Markov chain after
t0 steps, starting from the initial state X ′t0 conditioned on X ′t0 6= Y ′t0 , and similarly for Y ′2t0 . (Here
we use the fact that c was defined as a maximum over all starting distributions.) Then,

P(X ′2t0 6= Y ′2t0 , X
′
t0 6= Y ′t0) = P(X ′2t0 6= Y ′2t0 | X

′
t0 6= Y ′t0)P(X ′t0 6= Y ′t0) ≤ c2.

Going on like this, we see that

P(∀s ≤ t : X ′s 6= Y ′s ) ≤ cbt/t0c,

which clearly goes to 0 as t→∞, because c < 1. This finishes the proof.

Exercise 10. Prove that dtv(Xt, Yt) is non-increasing with t, where Xt and Yt are two instances
of the same Markov chain, started in two different, possibly random, initial states X0 and Y0. You
may want to use Lemma 9. (Note: the coupling in the proof above may not actually achieve the
tv-distance between Xt and Yt.)

There are other proofs of fundamental theorem, some of them based on what’s known as the
Perron-Frobenius theorem in linear algebra. The one we just gave is more elementary. At the
same time, the technique of using couplings has the benefit that in many cases we can actually get
useful quantitative bounds on how fast the Markov chain converges to its stationary distribution.
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Such bounds are, of course, very important for any application: if the chain converges very slowly,
then simulating it would be a very poor method of sampling from π. In general, we care about
dtv(Xt, Y ), where Y is distributed according to the stationary distribution π. In particular, we care
about the mixing time function

τ(α) = min{t : dtv(Xt, Y ) ≤ α}.

Some examples where couplings give good quantitative bounds are explored in the following exer-
cises.

Exercise 11. Let Ω = {0, 1}n. Define a Markov chain on Ω by setting Px,y = 1
2n if x and y have

Hamming distance 1, and Px,x = 1
2 . In other words, in every step of the Markov chain, we stay at

the current state with probability 1
2 , and with probability 1

2 we flip a random bit of it.

a. Show that the uniform distribution on Ω is stationary for this Markov chain. (Hint: you can
use (2).)

b. Let X0 = x and let Y0 be uniform in Ω. Let X = (X0, X1, . . . , Xt) and Y = (Y0, Y1, . . . , Yt)
evolve according to the Markov chain. Give a coupling of X and Y such that, if t ≥ Cn ln(n/α)
for some big enough constant C, then P(Xt 6= Yt) ≤ α.

Exercise 12. Let Ω be the set of all permutations σ of the set [n] = {1, . . . , n}. Consider a Markov
chain defined as follows: from a state Xt = σ, we sample Xt+1 by picking a uniformly random
i ∈ [n], and moving σi to the front of σ.

a. Show that the uniform distribution π on Ω is stationary for this Markov chain.

b. Given two copies X and Y of the Markov chain, started at two (possibly random) permutations
X0 and Y0, consider the following coupling of X and Y . At the t-th step, we pick a uniformly
random i ∈ [n]. Suppose that Xt−1 = σ and Yt−1 = σ′, and let j and k be such that
σj = σ′k = i. Then move σj to the front of σ to produce Xt, and σ′k to the front of σ′ to
produce Yt. Verify that this is a valid coupling of X and Y .

c. Let Et,i be the event that, with X and Y defined and coupled as above, the location of i in Xt

is the same as the location of i in Yt. Show that if Et−1,i holds, then Et,i also holds. Also,
show that

P(Et,i | not Et−1,i) ≥
1

n
.

d. Use the subproblems above to show that τ(α) = O(n log(n/α)).

Exercise 13. Let Ω = {0, . . . , n− 1}, and consider a Markov chain with transition matrix P given
by Pi,j = 1

4 if if j = i+ 1 mod n or j = i− 1 mod n, and Pi,i = 1
2 . (This is a “lazy” simple random

walk on an n-cycle, where lazy means that we have probability 1
2 not to move from the current

vertex.)

a. Let f(i, j) = max{|i − j|, n − |i − j|}. I.e. this is the length of the longer of the two paths
connecting i and j. Suppose that X and Y are two instances of the above Markov chain,
where X0 = x and Y0 = y, and X and Y are coupled so that they are independent. Show that,
if Xt−1 6= Yt−1, then E[f(Xt, Yt)

2 | Xt−1, Yt−1] ≥ f(Xt−1, Yt−1) + C for a constant C > 0.
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b. Let X and Y be defined and coupled as above, and let T be the first time when XT = YT . Use
the previous subproblem to argue that E[T ] = O(n2).

c. Use the subproblems above to bound τ(1/4).

6 The Metropolis-Hastings Algorithm

Suppose we have a state space Ω, and a vector of positive weights w, indexed by Ω. These weights
define a probability distribution π, given by πx = wx∑

y∈Ω wx
. We want to sample a random variable

X, taking values in Ω, so that, for every x ∈ Ω, P(X = x) = πx. As we already mentioned several
times, often Ω is a very large set, and we would like the sampling to take time much less than
|Ω|. In many cases, even computing the normalizing factor Z =

∑
y∈Ωwx in time less than |Ω| is

a difficult problem. However, sometimes we can sample from a distribution which is close to π by
a running a Markov chain designed so that its stationary distribution is π. In this section we give
one very general method to achieve this, due to Metropolis and Hastings.

Let’s start with a very natural example. Suppose that H = (VH , EH) is an undirected graph with
n vertices and m edges. Recall that a matching of H is a set of edges M ⊆ EH so that no two edges
in M share an endpoint. We let Ω be the set of matchings in H; this set can easily be exponential
in the size of H. We give each matching M of H weight wM = 1. Then the probability distribution
π defined, as above, by πM = wM∑

M′∈Ω wM′
is just the uniform distribution over Ω, and πM = 1

|Ω| .

Sampling from π then corresponds to sampling a uniformly random matching of H. Can we we
draw such a sample in time which is polynomial in the size of H?

The bad news is that, by a famous theorem of Valiant, even computing |Ω| is at least as hard as
any problem in NP. The good news is that it is easy to design a Markov chain whose stationary
distribution is π. A step of this chain is given, in pseudocode, next. The algorithm Match-Step
takes a matching Xt, which is the state of the Markov chain at time t, and produces a matching
Xt+1, which is the state at time t+ 1.

Match-Step(Xt)

1 Sample a uniformly random e ∈ EH

2 if e ∈ Xt

3 Y = Xt \ {e}
4 else Y = Xt ∪ {e}
5 if Y is not a matching
6 Output Xt+1 = Xt

7 else

Output Xt+1 =

{
Y with probability 1

2

Xt with probability 1
2

Clearly this is a Markov chain over the set Ω of matchings in H. In the graph G corresponding
to the Markov chain, every vertex M is a matching in H, and there is an edge from M to M ′ if
M ′ = M or if we can get M ′ from M by adding or removing a single edge. An example of G for
a 4-vertex graph H is given in Figure 3. We claim that G is strongly connected, so the chain is
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irredicuble. To get from any matching M to M ′, first remove all edges in M \M ′ from M , one by
one. Then you are left with M ∩M ′. Now you can add, one by one, all edges in M ′ \M . This
describes a path in G. Moreover, since each M has a self-loop in G, by Exercise 1 the Markov chain
is also aperiodic. If we can also verify that the stationary distribution of the chain is uniform, then,
by the fundamental theorem, we would know that running it long enough would produce a random
matching in H whose distribution is close to uniform.

H =

Figure 3: The transition graph G for the Markov chain on matchings of the graph H.

Let dM be the out-degree of M in G (not counting self-loops). I.e. dM is the number of matchings
we can get from M by adding or removing an edge, or, equivalently, dM is the number of edges
that can be added to or removed from M so that we still have a matching. Then, for Xt = M , the
probability that Y is a matching is equal to dM

m . We have that, for any matching M , the probability
that the Markov chain stays at M is

PM,M =

(
1− dM

m

)
+
dM
m
· 1

2
= 1− dM

2m
,

where the first term is the probability that Y is not a matching, and the second term is the
probability that Y is a matching, but we still stay at M . If M and M ′ are distinct matchings of H
such that (M,M ′) is an edge of G, then the probability of transitioning from M to M ′ is

PM,M ′ =
dM
m
· 1

2
· 1

dM
=

1

2m
,

because, if Xt = M , the probability that Y is a matching is dM
m , and, conditional on this event, the

probability of moving to a new matching is 1
2 , and any neighboring matching M ′ of M is equally

likely.

Now we can verify that the Markov chain is time reversible. Notice first that if (M,M ′) is an edge
of G, then so is (M ′,M): if we can get M ′ from M by adding an edge to M , then we can get M
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from M ′ by removing the same edge, and vice versa. Then, for πM = 1
|Ω| and any edge (M,M ′) of

G where M and M ′ are distinct matchings of H, we have

πMPM,M ′ =
1

2m|Ω|
= πM ′PM ′,M .

The time-reversible condition (2) is of course trivial for self-loops. It follows that the Markov chain
is time reversible, and, by Lemma 6, has stationary distribution π, i.e. uniform over Ω.

Running this Markov chain for τ(ε) steps then produces a random matching whose probability
distribution is within ε from the uniform one in total variation distance. Since a a single step of
the Markov chain can be executed in time O(n + m), the total running time of this algorithm is
O((n+m)τ(ε)). If we knew that τ(ε) is polynomial in n and m, we would have an efficient algorithm
to approximately sample a random matching in H. It turns out that τ(ε) = O(m2n log(n) log(1/ε)),
but proving this is beyond the scope of these notes.

The design of the Markov chain above follows from a general method. Suppose now that Ω is some
arbitrary state space, and G = (Ω, E) is a connected graph such that if (x, y) ∈ E, then (y, x) ∈ Ω
too. Let d be an upper bound on the maximum out-degree in G of any state x ∈ Ω. Let w be a
vector of positive weights, one for each state in Ω. Define a a single step of a Markov chain on Ω
as follows:

Metropolis-Step(Xt)

1 Let Γ(Xt) = {y : (Xt, y) ∈ E} be the out-neighbors of x

2 Pick Y so that, for any y ∈ Γ(Xt), P(Y = y) = 1
d and P(Y = ⊥) = 1− |Γ(Xt)|

d
3 if Y == ⊥
4 Output Xt+1 = Xt

5 else

Output Xt+1 =

Y with probability 1
2 ·min

{
1, wY

wXt

}
Xt with probability 1− 1

2 ·min
{

1, wY
wXt

}
Theorem 11. The Markov chain defined by Metropolis-Step(Xt) is irreducible, aperiodic, and
has stationary distribution π defined by πx = wx∑

y∈Ω wy
.

Proof. The proof is analogous to the special case of matchings we considered above.

The chain is irreducible because we assumed that the graph G is connected and symmetric, so it
must be strongly connected. Moreover, it is aperiodic by Exercise 1, because at every step we have
probability at least 1

2 to stay at the current state.

For any x 6= y such that (x, y) ∈ E, the transition probability of the chain is

Px,y =
1

d
· 1

2
·min

{
1,
wy

wx

}
.

Moreover, if (x, y) ∈ E, then (y, x) ∈ E, and, by symmetry,

Py,x =
1

d
· 1

2
·min

{
1,
wx

wy

}
.
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It follows that

πxPx,y =
1

2d
∑

z∈Ωwz
·min{wx, wy} = πyPy,x.

Therefore, the chain is time reversible, and, by Lemma 6 has stationary distribution π.

The algorithm which simulates this Markov chain in order to sample approximately from π is called
the Metropolis-Hastings algorithm.

Exercise 14. Verify that Match-Step is a special case of MH-Step.

Let λ > 0, and, for any matching M in H, define wM = λ|M |. Using MH-step, modify Match-Step
so that the modified Markov chain has stationary distribution π given by πM = wM∑

M′∈Ω wM′
, where

Ω is the set of matchings of H. Every step of the Markov chain should still run in time O(n+m)
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