
CSC473: Advanced Algorithm Design Winter 2018

Week 3: Approximate Near Neighbor Search

Aleksandar Nikolov

1 Introduction

Last week we discussed the randomized O(n) expected time algorithm to compute the closest pair
of points in the plane. This week we continue with a related data structure problem: (approximate)
near neighbor search. Suppose you have a dataset P of n entries: images, text documents, census
data, etc. Using a Dictionary data structure, for example a B-tree or a hash table, you can check if
an entry x is in P . But sometimes you actually want to find an entry y in the database which is as
“close” as possible to x, and not necessarily exactly the same. This is one of the most basic ways
to do classification, for example: you keep a database of labeled images, and given a new image
you want to see if it is close to any image in the database; if your new image is close to an image
of a dog, then maybe it is also an image of a dog. Or, more simply, databases can contain errors,
and looking for an approximate match is a way to make our database search more robust.

How is this related to the closest pair of points problem? The idea is that we can think of the
entries of the database P as elements of a metric space. I.e. each database entry x is an element
of some universe X, and we have a distance function d which assigns a non-negative distance to
every pair of points. Usually we insist that d is a metric, which means that it is

1. Reflexive: d(x, y) = 0 if and only if x = y;

2. Symmetric: d(x, y) = d(y, x) for all x, y ∈ X;

3. Satisfies the Triangle Inequality : d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then the pair (X, d) is called a metric space. One very basic metric is given by the Euclidean
distance between x and y, where x, y are points in the plane, or 3-dimensional space, or in general
d-dimensional space. In this language, the closest pair of points problem is to find two distinct
points x, y, in an input set P ⊆ X, that minimize the distance d(x, y). In nearest neighbor search,
our goal is design a data structure that maintains a set (database) P of points (from X). We need
to be able to insert and delete points from the data structure. Most importantly, given a query
point x, we want to efficiently output a point y ∈ P which has the smallest distance d(x, y) to x.

2 Approximate Near Neighbors for Hamming Distance

2.1 Setup

Let us move away from the abstract definition of metric spaces, and look at something very concrete.
Suppose you have a dataset P consisting of n strings of d bits each. I.e. P is a subset of {0, 1}d.
For a string x, we write xi for its i-th bit (an alternative notation would be to think of x as an

1

array of d bits, and write x[i]). In the nearest neighbor problem we want to design a data structure
that maintains P in memory and supports the following operations:

• Insert(x): insert x into P ;

• NearestNeighbor(x): output the closest string y to x in P .

Here closest means the string y that minimizes the Hamming distance

dH(x, y) = |{i : xi 6= yi}|,

i.e. the number of bits in which x and y differ.

This data structure problem turns out to be very hard. For all known data structures that solve
it, at least one of the two operations runs in time Ω(min{2d, dn}). In other words, when d is on
the order of log n, they are no better than just storing a list of all strings in P , and doing a linear
search to find the nearest neighbor. (This is one example of the curse of dimensionality.)

Exercise 1. Give a data structure for which Insert can be implemented in time O(1), and
NearestNeighbor can be implemented in time O(2d).

To overcome this challenge, we relax the requirements a little bit. Instead of NearestNeighbor,
we ask for another procedure:

• ApxNearestNeighbor(x): output a string y ∈ P such that

min{dH(x, z) : z ∈ P} ≤ dH(x, y) ≤ C ·min{dH(x, z) : z ∈ P}, (1)

where C > 1 is a constant.

I.e. we do not insist that we find the exact nearest neighbor, and instead, we are satisfied to find a
string which is not much further from x than the nearest neighbor. The constant C is called the
approximation factor. This is the approximate nearest neighbor search problem (ANNS). We call a
string y that satisfies (1) a C-near neighbor of x.

Exercise 2. Suppose there exists a data structure for which Insert and ApxNearestNeighbor
run in time T (n). Use these two operations to find a pair x, y of distinct strings in a given set P
in time O(T (n)n) such that

dH(x, y) ≤ C min{d(x′, y′) : x′, y′ ∈ P, x′ 6= y′}.

Using a clever hashing scheme (due to Indyk and Motwani), we will give a randomized data structure
for this problem. In this data structure, Insert and ApxNearestNeighbor will run in time
O(dnρ), where ρ ≈ 1

C , and also ApxNearestNeighbor(x) will output a C-near neighbor of x
with probability at least 2

3 .

It will in fact be enough to implement another data structure, which is parametrized by a “distance
scale” r, and supports Insert(x), which is defined as before, and an operation NerNeighborr(x)
with the following guarantees:

2

1. If there exists a string z in P such that dH(x, z) ≤ r, then NearNeighborr(x) will output
some y ∈ P for which dH(x, y) ≤ Cr;

2. If every string z in P satisfies dH(x, z) ≥ Cr, then NearNeighborr(x) outputs Fail.

An important remark is that the data structure and the definition of the procedure NearNeighborr(x)
can both depend on r.

Exercise 3. Assume that for each r ∈ {1, . . . d}, we can implement a data structure supporting
Insert and NearNeighborr in time T (n), so that NearNeighborr satisfies property 1. with
probability at least 2

3 , and property 2. with probability 1. Show that we can then implement a data
structure supporting Insert and ApxNearestNeighbor(x) with approximation factor 2C, so that
both operations run in time run in time O(T (n) log(d)), and ApxNearestNeighbor has success
probability 2

3 .

2.2 Buckets

Recall that in the data structure we used to solve the closest pair of points problem we discretized
our space and then, when we need to find a point q close to a query point p, we just used a hash
table to check if any cell around p is non-empty. We could try something similar here. Our space
is already discrete, so we can skip the discretization step. Then, given a query string x we can use
a hash table to check if P contains any string in the set {y : dH(x, y) ≤ r}. However, the size of
this set is (

d

0

)
+

(
d

1

)
+ . . .+

(
d

r

)
,

which, for r = d
2 is 2d−1, and can be much larger than n if d ≥ 10 log2 n, for example. This is, once

again, the curse of dimensionality.

To avoid this problem, we use two-level hashing. The first level is the key idea of the data structure.
We will define a random hash function g with the property that for any two strings x and y such
that dH(x, y) ≤ r, the probability that g(x) = g(y) is large, and for any two strings such that
dH(x, y) ≥ Cr, the probability that g(x) = g(y) is small. Think of g(x) as defining a bucket in
which x falls. We expect the near neighbors of x to fall in the same bucket as x, and the strings
that are far from x to fall in a different bucket. Then the near neighbors of x can be found by
maintaining the buckets using ordinary hashing.

For a sequence I = (i1, . . . , ik) of indexes, let gI(x) = xi1xi2 . . . xik . I.e., g just maps x to the
k-bit string consisting of the coordinates of x indexed by I. We pick a random hash function gI by
picking k random indexes in {1, . . . , d}, uniformly and independently with replacement.

Lemma 1. For the random hash function gI described above, and any two d-bit strings x, y ∈
{0, 1}d, we have

dH(x, y) ≤ r =⇒ P(gI(x) = gI(y)) ≥ pk1, (2)

dH(x, y) ≥ Cr =⇒ P(gI(x) = gI(y)) ≤ pk2, (3)

where p1 = 1− r
d and p2 = 1− Cr

d .

3

Proof. Let i be a uniformly random index in {1, . . . , d}. For any two d-bit strings x and y,

P(xi = yi) =
|{i : xi = yi}|

d
= 1− |{i : xi 6= yi}|

d
= 1− dH(x, y)

d
.

Then, if dH(x, y) ≤ r, we have that P(xi = yi) ≥ p1; if dH(x, y) ≥ Cr, we have that P(xi = yi) ≤ p2.
The lemma follows immediately because

P(gI(x) = gI(y)) = P(xi1 = yi1 and . . . and xik = yik) = P(xi = yi)
k.

The final equality is due to the fact that the indexes i1, . . . , ik are chosen uniformly and indepen-
dently.

We call all strings x in P with the same hash value gI(x) a bucket. The value gI(x) itself is the label
of the bucket. Thus, we have the property that strings that are near each other are more likely to
end up in the same bucket than strings that are far.

2.3 The Two-Level Hashing Scheme

Our data structure consists of L hash tables T1, . . . , TL, each with m slots, m ≥ n. We will assume
that the hash function h` : {0, 1}k → {1, . . . ,m} is used with the hash table T`. Our requirement
for h` is the standard one: that the probability of any two distinct elements colliding is bounded
by 1

m . We will resolve collisions by chaining, i.e. every slot T`[i] of each hash table is a pointer to
the head of a linked list. We will also keep L hash function gI1 , . . . , gIL , defined as in the previous
section, where I` is a sequence of k indexes from {1, . . . , d}, chosen independently and uniformly
with replacement.

The Insert procedure is straightforward:

Insert(x)

1 for ` = 1 to L
2 Insert x at the head of the linked list T [h`(gI`)]

The worst-case running time of Insert, assuming that evaluating h` takes time O(k), is O(kL).

The NearNeighborr procedure is not much more complicated:

NearNeighborr(x)

1 num-checked = 0
2 for ` = 1 to L
3 i = h`(gI`(x))
4 Set y to the head of T`[i]
5 while y 6= Nil
6 if dH(x, y) ≤ Cr
7 return y
8 num-checked = num-checked + 1
9 if num-checked == 12L+ 1

10 return Fail
11 else Set y to the next element in T`[i]
12 return Fail

4

In words, the procedure inspects the cells that the bucket gI`(x) hashes to, starting from ` = 1 to
` = L. For each `, it inspects the linked list in the hash table cell, and checks whether any of the
strings stored in it is at distance at most Cr from x. Once the procedure has exhausted all L hash
table cells, or has inspected at least 12L + 1 strings, it quits and outputs Fail. Because it takes
O(k) time to compute each hash value, and O(d) time to compute the Hamming distance between
two strings, the worst-case running time of NearNeighbor is O((k + d)L).

Before we analyze the data structure, we need a couple of basic facts from probability theory. One
of them is the union bound : for any two events A and B in a probability space, P(A or B) ≤
P(A) + P(B). This is obvious: draw a Venn diagram of A and B and convince yourself that

P(A or B) = P(A) + P(B)− P(A and B) ≤ P(A) + P(B),

because probabilities are non-negative. Using a simple induction, this inequality extends to k
events: if A1, . . . , Ak are events in a probability space, then

P(A1 or . . . or Ak) ≤ P(A1) + . . .+ P(Ak).

Note that we do not need to know anything at all about the events A1, . . . , Ak: they do not need
to be independent or disjoint, for example. To quote one of my math professors, the union bound
is a very powerful triviality.

The other fact we need is Markov’s inequality.

Lemma 2 (Markov’s Inequality). Let X ≥ 0 be a random variable. Then, for any x > 0,

P(X > x) <
E[X]

x
.

Proof. By the law of total expectation:

E[X] = E[X | X ≤ x]P(X ≤ x) + E[X | X > x]P(X > x).

Because X ≥ 0, the first term is non-negative. The second term is strictly bigger than xP(X > x).
Therefore

E[X] > xP(X > x),

and we get the inequality by re-arranging.

Both these simple facts are very important and will be used many times in the course.

We are now ready to analyze the data structure. The definition of the NearNeighborr guarantees
that it will never output a string with Hamming distance more than Cr from x. Our main goal is
to bound the probability that the procedure outputs Fail if there actually is a string at distance
at most r from x. This is done in the following theorem.

Theorem 3. Let p1 and p2 be as in Lemma 1 and let k = dlog1/p2(n)e. Let ρ = log(1/p1)
log(1/p2)

, and let

L = d2nρe. If there exists a string z∗ in P such that dH(x, z∗) ≤ r then, with probability at least 2
3 ,

NearNeighborr(x) will output some y ∈ P for which dH(x, y) ≤ Cr.

5

Proof. Let us fix some z∗ ∈ P such that dH(x, z∗) ≤ r; such a string exists by assumption. Let
F = {z ∈ P : dH(x, z) > Cr}. Let us say that the procedure NearNeighborr(x) succeeds if it
outputs some y ∈ P for which dH(x, y) ≤ Cr. In order for this to happen, it is clearly enough that
the following two properties hold

1. a string in F collides with x at most 12L times;

2. z∗ collides with x.

Above “collide” is used in the following sense: a string y collides with x if h`(gI`(y)) = h`(gI`(x)
for some `. We count collisions with multiplicity: if some y ∈ F collides with x in different hash
tables T`, we count each collision separately. The first property makes sure that not all string we
inspect will be far (i.e. distance more than Cr) from x. The second property makes sure that we
will find at least one string that is close to x. The first property by itself is not sufficient, as x may
be alone in its cell in each hash table, and then we would not find a near neighbor of it. We will
show that both properties hold simultaneously with constant probability.

An element y ∈ F can collide with x in T` in one of two cases: either u = gI`(x) 6= gI`(y) = v
but h`(u) = h`(v), or gI`(x) = gI`(y). Let us fix an arbitrary y ∈ F , and consider these two cases
separately. In the first case, recall that we picked each hash table to have m ≥ n slots, and assumed
that h` is chosen so that P(h`(u) = h`(v)) ≤ 1

m ≤
1
n for any u 6= v. In the second case, by Lemma 1

and our choice of k we have that P(gI`(x) = gI`(y)) ≤ pk2 ≤ 1
n . Since the two cases are disjoint, we

have that

P(y collides with x in T`) ≤
1

n
+

1

n
=

2

n
.

Let Xy,` be the indicator random variable which equals 1 if y collides with x in T`, and equals

0 otherwise. Let X =
∑

y∈F
∑L

`=1Xy,` be the total number of collisions with x. By linearity of
expectation,

E[X] =
∑
y∈F

L∑
`=1

P(Xy,` = 1) ≤ 2|F |L
n
≤ 2L,

where we used the fact that |F | ≤ |P | = n. By Markov’s inequality, P(X > 12L) < 1
6 . This

establishes that the first property holds with probability at least 5
6 .

Let us now estimate the probability that z∗ collides with x. This probability is at least as large as
the probability that there exists an ` ∈ {1, . . . , L} for which gI`(x) = gI`(z

∗). (A collision may also
happen if this is not the case, but we will ignore that possibility.) By Lemma 1, and because the
different I` were chosen independently,

P(∃` : gI`(x) = gI`(z
∗)) = 1−

L∏
`=1

(1− P(gI`(x) = gI`(z
∗)))

≥ 1− (1− pk1)L ≥ 1− e−Lpk1 .

To simplify the calculation, assume that k = log1/p1(n). Then

pk1 = 2−k log2(1/p1) = 2
− log2(n)

log2(1/p2)
log2(1/p1) = n−ρ.

Therefore, Lpk1 = 2, and we have that z∗ collides with x with probability at least 1 − 1
e2

. By the
union bound, the probability that both properties hold is at least 1 − (16 + 1

e2
) > 2

3 . This finishes
the proof.

6

Theorem 3 implies that Insert and NearNeighborr run in time O((k + d)nρ). Using the ap-

proximation 1 − x ≈ e−x, which is accurate for x close to 0, we see that ρ = log(1/p1)
log(1/p2)

≈ 1
C , and

k = O(d log n). So, overall, both operations run in time roughly O(dn1/C log n). Importantly, for
C > 1 this is much faster than the time Θ(dn) taken by simple linear search.

If we want NearNeighborr to succeed with probability at least 1 − δ, it is enough to run it
independently O(log(1/δ)) times, and check if any of the runs succeeded. (Exercise: do the
calculation.)

3 Locality Sensitive Hashing

Let us now see how we can adapt what we just did for Hamming distance to other distance functions.
The key idea was to have a hash function that is more likely to put nearby points in the same bucket,
than to put far away points in the same bucket. The precise definition follows.

Definition 4. Let d : X × X → R be a distance measure defined on the universe X. A random
hash function h with domain X is locality sensitive with parameter ρ if

d(x, y) ≤ r =⇒ P(h(x) = h(y)) ≥ p1,
d(x, y) ≥ Cr =⇒ P(h(x) = h(y)) ≤ p2,

and ρ = log(1/p1)
log(1/p2)

.

Lemma 1 shows that the hash function h(x) = xi, where i is a random index in {1, . . . , d}, is locality
sensitive for Hamming distance.

Exercise 4. Check that we can implement Insert and NearNeighborr for the distance function
d with the same running time and guarantees as in the previous section by substituting the hash
function gI with g defined by g(x) = (h1(x), . . . , hk(x)), where h1, . . . , hk are independently chosen
locality sensitive hash functions.

This approach gives approximate near neighbor search algorithms for many important distance
functions, for example Euclidean distance in high dimension.

Exercise 5. The Manhattan, or `1, distance between two d-dimensional points x, y ∈ {0, . . . , N −
1}d is defined by

d1(x, y) =

d∑
i=1

|xi − yi|.

For example, in d = 2, this distance tells us how many steps we need to go from x to y, if we
are only allowed to go up and down, and left and right. Give a locality sensitive hash function for
Manhattan distance with p1 ≥ 1 −Kr and p2 ≤ 1 −KCr, where K a quantity that depends on d
and N , but not on r or C. Give an explicit value of K for your hash function. The function should
be computable in time O(1).

7

Exercise 6. Consider a distance function d(x, y) between two d-bit strings x, y ∈ {0, 1}d defined
to equal the sum of the indexes in which x and y differ. I.e. we define

d(x, y) =
∑

i:xi 6=yi

i.

For example, the 8-bit strings x = 01000111 and y = 00010101 differ in bits 2, 4, 7, so d(x, y) =
2+4+7 = 13. Give a locality sensitive hash function for this distance function so that p1 ≥ 1−Kr
and p2 ≤ 1−KCr, where K a quantity that depends on d but not on r or C. Give an explicit value
of K for your hash function. The function should be computable in time O(1) when x is given as
an array of size n. Justify your answer.

The survey by Andoni and Indyk [AI08] has more information about locality sensitive hashing.
The website http://www.mit.edu/~andoni/LSH contains links to some of the latest papers, and
two different implementations.

References

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

8

http://www.mit.edu/~andoni/LSH

	Introduction
	Approximate Near Neighbors for Hamming Distance
	Setup
	Buckets
	The Two-Level Hashing Scheme

	Locality Sensitive Hashing

