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Advanced Composition

Theorem 1 (Simple Composition). If M1, ...,Mk are ε-DP and M(x) = Mk(x,Mk−1(x,Mk−2(x, ...))),
then it follows that M(x) is kε-DP.

Note that we say Mi is ε-DP if ∀y ∈
Range(Mi−1), Mi(·, y) is ε-DP.

Theorem 2 (Advanced Composition). If M1, ...,Mk are ε-DP and M(x) = Mk(x,Mk−1(x,Mk−2(x, ...))),
then M(x) is (ε′, δ)-DP for all δ and ε′ =

√
2k log 1/δ + k(eε − 1).

To prove the advanced composition theorem, we will start with some preliminary definitions.

Definition 3. Let X,Y be random variables taking values in R, then we can define the Kullback-
Leibler divergence as:

DKL(X‖Y ) =
∑
r∈R

P(X = r) log

(
P(X = r)

P(Y = r)

)
. (1)

We also define the max-KL divergence in an analogous way:

D∞(X‖Y ) = max
r∈R

log

(
P(X = r)

P(Y = r)

)
. (2)

Divergences can be seen as measures of “distance” between distributions. However, it should be
noted that they are not metrics, in particular, they are not symmetric with respect to switching
the distributions, and they do not satisfy the triangle inequality.

The following proposition is immediate from the definitions.

Proposition 4. If M is ε-DP, then for any two databases x and x′ differing in one element, it
holds that D∞(M(x)‖M(x′)) ≤ ε.

Below, we use the notation pi = P(X = i) and qi = P(Y = i) for simplicity. The first proposition
we prove shows that KL-divergencce does have at least one property in common with metrics: it
is non-negative, and takes value 0 only when X = Y almost everywhere.

Proposition 5. For all distributions X,Y , DKL(X‖Y ) ≥ 0, and equality is achieved only when
X = Y with probability 1.
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Proof. By definition, we have that:

DKL(X‖Y ) = −
∑
r

pr log(
qr
pr

) ≥ − log(
∑
r

prqr/pr) = − log(
∑
r

qr) = 0, (3)

where we used Jensen’s inequality and the convexity of the functionφ(x) = − log(x). The equality
case follows from the strong convexity of φ.

The following is the main technical lemma that we need in the proof. It says, roughly, that if the
max-KL-divergence of X and Y is small in both directions, then the KL-divergence is even smaller.
For an intuitive picture of why that should be true observe that the max KL-divergence is the
maximum of log pr

qr
, while the KL-divergence is the average. In order for the average to be close to

the maximum, we would need that pr is bigger than qr except for a set with very small probability
under p. But then q must give much larger mass to this set than p, which contradicts the fact that
both max-KL-divergencies are bounded. The formal proof follows.

Lemma 6. For X,Y random variables, let D∞(X‖Y ) ≤ ε and D∞(Y ‖X) ≤ ε. It follows that
DKL(X‖Y ) ≤ ε(eε − 1) ≈ ε2.

Proof. By the previous proposition, and using Hölder’s inequality with p = 1 and q = ∞, we can
show that

DKL(X‖Y ) ≤ DKL(Y ‖X) +DKL(X‖Y )

=
∑
r

(
pr log

pr
qr

+ qr log
qr
pr

)
=
∑
r

pr

(
log

pr
qr

+ log
qr
pr

)
+
∑
r

(qr − pr) log
qr
pr

=
∑
r

(qr − pr) log
qr
pr
≤

(∑
r

|qr − pr|

)
·max

r

∣∣∣∣log
qr
pr

∣∣∣∣
≤ ε

∑
r

max {qr, pr} −min {qr, pr} ≤ ε
∑
r

(eε − 1) ·min {qr, pr} ≤ ε(eε − 1)

Theorem 7 (Azuma). Let Z1, ..., Zk ∈ R be random variables such that ∀i |Zi| ≤ α and E[Zi|Z1 =
z1, ..., Zi−1 = zi−1] ≤ β. Then :

P

(∑
i

Zi > kβ + t
√
kα

)
≤ exp

(
− t

2

2

)
(4)

We are now ready to prove the advanced composition theorem using the above ingredients.

Proof of Theorem 2. Fix two arbitrary neighboring databases x, x′ , and define yi = Mi(x, yi−1),
y′i = Mi(x

′, yi−1) with y1 = M(x), y′1 = M(x′). Define the random variable Zi as:

Zi = log

(
P(yi|yi−1, ..., y1)

P(y′i = yi|y′i−1 = yi−1, ..., y′1 = y1)

)
,
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which, by using the chain rule, gives us that:

k∑
i=1

Zi = log

( ∏k
i=1 P(yi|yi−1 =, ..., y1)∏k

i=1 P(y′i = yi|y′i−1 = yi−1, ..., y′1 = y1)

)

= log

(
P(yk, yk−1, ..., y1)

P(y′k = yk, y
′
k−1 = yk−1, ..., y

′
1 = y1)

)
.

Fix r1, ..., ri−1 and set the random variables X and Y to:

X = yi|yi−1 = ri−1, ...., y1 = r1;

Y = y′i|y′i−1 = ri−1, ...., y
′
1 = r1;

Because Mi is ε-DP for all i, we get that D∞(X‖Y ) ≤ ε and D∞(Y ‖X) ≤ ε, implying that |Zi| ≤ ε
and, by our main lemma, that:

E[Zi|yi−1 = ri−1, ..., y1 = r1] ≤ ε(eε − 1). (5)

Finishing off the proof, we use Azuma’s inequality with t =
√

2 log 1/δ, α = ε and β = ε(eε − 1) to
arrive at the fact that:

P

(
k∑
i=1

Zi > kε(eε − 1) + ε
√

2 log 1/δk

)
< δ, (6)

or that ∃B ⊆ Range(M1)× ...× Range(Mk) = Rk for which:

1. P((y1, ..., yk) ∈ B) < δ.

2. ∀(r1, ..., rk) ∈ Rk\B, we have:

log

(
P(yk = rk, yk−1 = rk−1, ..., y1 = r1)

P(y′k = rk, y
′
k−1 = rk−1, ..., y

′
1 = r1)

)
< ε′. (7)

As we saw in the privacy analysis of the Gaussian noise mechanism, this is sufficient to prove
(ε′, δ)-DP.
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