CSC2419 W17: Homework Assignment Due: April 4, beginning of class

April 2, 2017

Guidelines:

- Your assignment solution must be submitted as a *typed* PDF document.
- Submit this assignment at the beginning of the last class, on April 4.
- This is an individual assignment, i.e. you are not supposed to consult other students. You may consult the materials linked to and posted on the course website: Dwork and Roth's monograph, and Vadhan's tutorial notes, our lecture notes.
- Unless stated otherwise, you should justify all your answers using rigorous arguments.

Question 1. (20 marks) Consider a data universe $\mathcal{X} = [N] = \{1, \ldots, N\}$ (i.e. each database row is just an integer between 1 and N), and the set $\mathcal{Q} = \{q_1, \ldots, q_N\}$ of counting queries defined for any $j \in \mathcal{X}$ by

$$q_i(j) = \begin{cases} 1 & j \le i \\ 0 & \text{otherwise} \end{cases}.$$

Assume that $n \geq \frac{C(1+\log N)^c}{\alpha \varepsilon}$, for C and c large enough absolute constants which are independent of N, n, α , and ε . Describe an ε -differentially private mechanism that, on input a database $x \in \mathcal{X}^n$ (with n as above), outputs answers y_1, \ldots, y_N such that, with probability at least 1/2, $\max_{i=1}^N |y_i - q_i(x)| \leq \alpha$. Here, as usual, we define $q_i(x) = \frac{1}{n} \sum_{j=1}^n q_i(x_j)$.

Question 2. (20 marks) We consider a privacy model in which the universe \mathcal{X} is $\binom{[N]}{2}$, i.e. the edges of the complete graph on the vertices $\{1, \ldots, N\}$. In other words, a database here is simply a (multi-)graph G = ([N], E). For this question we will assume all databases are simple graphs, i.e. there are no multiedges. We define two databases/graphs G = ([N], E) and G' = ([N], E') to be neighboring if the sets E and E' have symmetric difference of size at most 1. This is a suitable model when analyzing a social network in which friendships are considered private.

We will consider a private algorithm for the minimum cut problem in this model. For a graph G = ([N], E)and a subset of the vertices $S \subseteq [N]$, $S \neq \emptyset$, [N], let $E(S, \overline{S})$ be the set of edges with exactly one endpoint in S. The size of the minimum cut of G is $OPT(G) = \min\{|E(S, \overline{S})| : \emptyset \subset S \subset [N]\}$. Assume that $OPT(G) \ge C(1 + \log N)/\varepsilon$ for a large enough constant C independent of N and ε . Show that a suitable application of the exponential mechanism on input G = ([N], E) outputs a set $S, \emptyset \subset S \subset [N]$, such that, with probability at least 1/2, $|E(S, \overline{S})| \le OPT(G) + O(\log(N)/\varepsilon)$. You should set the parameters of the mechanism so that it is ε -differentially private.

NOTE: Because there are exponentially many cuts of G, the standard analysis of the exponential mechanism will not be sufficient. You can use the following theorem, due to Karger: in any connected undirected graph G with N vertices, for any integer $\alpha \geq 1$, the number of cuts (S, \bar{S}) such that $|E(S, \bar{S})| \leq \alpha \text{OPT}(G)$ is at most $N^{2\alpha}$.

Question 3. (20 marks) Suppose that \mathcal{M} is an algorithm that, on input $x \in \{0, 1\}^n$ outputs $x' \in \{0, 1\}^n$ such that, with probability at least 2/3, $\frac{|\{i:x_i \neq x'_i\}|}{n} \leq \alpha$. Show that for all sufficiently small ε and δ there exists a constant $c(\varepsilon, \delta) > 0$ such that if $\alpha < c(\varepsilon, \delta)$, then \mathcal{M} is not (ε, δ) -differentially private. Give an explicit value for $c(\varepsilon, \delta)$.