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An ldeal Goal

The study reveals nothing new about any particular individual to an adversary.
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e |n particular, believes Sasho has four fingers on each hand.
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Another example: aLg\AA' wM

e Adversary believes there is no link between smoking and cancer.
e Also knows that Sasho smokes

e Study reveals link between smoking and cancer.



Statistical vs Personal Information

In the examples, the adversary learns statistical information that pertains to Sasho.

e |f science works, it better reveal something about me.

What information is statistical and what information is personal?

Test: Could the adversary have learned this information if my data were not analyzed?
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Towards a Definition

The algorithm doing the analysis should do almost the same in all the following cases:

e my data is included in the data set
e my data is not included in the data set

e my data is changed in the data set
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Data Model
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Data set: (multi-)set X of n data points X = {x1,...,x,}.

e each data point (or row) x; is the data of one person X

e each data pomt comes from a unjverse X
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A data analysis algorithm (a mechanism) is a randomized algorithm M that takes a
data set X and produces the results of the data analysis as output.
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Almost a Definition
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1. (variable @) we can get X’ from X by adding or removing an element b L A P

b daton et size i
2. (fixed n) we can get X’ from X by replacing an element with another
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Definition
An mechanism M is differentially private if, for any two neighbouring datasets X, X’
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Total Variation Distance Differential Privacy
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An mechanism M is J-tv differentially private if, for any two neighbouring datasets
X, X’, and any set of outputs S ¥ o= k& o & k

[B((M(X) € S) — B(M(X) € S)| < 5. X'73&v -kl
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Finally, Differential Privacy

Definition
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An mechanism M is e-differentially private if, for any two neighbouring datasets X, X/,

and any set of outputs S
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A Hypothesis Testing Viewpoint
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Suppose X = {Xi,...,X,} are drawr IID)from some distribution. !

The adversary A wants to use M(X) to test which hypothesis holds:

Ho: Xi = yo k?ir DP
e E.g., "Sasho does not smoke”
Hi: Xi=wn

e E.g., “Sasho smokes”
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Randomized Response
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e dataset X = {x1,...,x,} C X, 1 (3‘ X s a wd/u\
e query g: X — {0,1} E-‘J- 7/()& = %O & Lo

output M(X) = (Yi(x1),--., Ya(xn)), where, independently
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Privacy Analysis
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Accuracy Analysis
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Want to approximate g(X) =
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