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An Ideal Goal

The study reveals nothing new about any particular individual to an adversary.

Example:

• Adversary believes humans have four fingers on each hand.

• In particular, believes Sasho has four fingers on each hand.

• Study reveals distribution of number of fingers per person’s hand.

• Adversary now has learned Sasho probably has five fingers per hand.

Another example:

• Adversary believes there is no link between smoking and cancer.

• Also knows that Sasho smokes

• Study reveals link between smoking and cancer.
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Statistical vs Personal Information

In the examples, the adversary learns statistical information that pertains to Sasho.

• If science works, it better reveal something about me.

What information is statistical and what information is personal?

Test: Could the adversary have learned this information if my data were not analyzed?
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Towards a Definition

The algorithm doing the analysis should do almost the same in all the following cases:

• my data is included in the data set

• my data is not included in the data set

• my data is changed in the data set
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Data Model

Data set: (multi-)set X of n data points X = {x1, . . . , xn}.

• each data point (or row) xi is the data of one person

• each data point comes from a universe X

A data analysis algorithm (a mechanism) is a randomized algorithm M that takes a

data set X and produces the results of the data analysis as output.
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Almost a Definition

We call two data sets X and X
0
neighbouring if

1. (variable n) we can get X 0 from X by adding or removing an element

2. (fixed n) we can get X 0 from X by replacing an element with another

Definition

An mechanism M is di↵erentially private if, for any two neighbouring datasets X ,X 0

M(X ) ⇡ M(X 0)
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Total Variation Distance Di↵erential Privacy

Definition

An mechanism M is �-tv di↵erentially private if, for any two neighbouring datasets

X ,X 0, and any set of outputs S

|P(M(X ) 2 S)� P(M(X 0) 2 S)|  �.

What should � be?

• � < 1
2n?

• � � 1
2n?
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Finally, Di↵erential Privacy

Definition

An mechanism M is "-di↵erentially private if, for any two neighbouring datasets X ,X 0,

and any set of outputs S

P(M(X ) 2 S)  e
"P(M(X 0) 2 S).
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A Hypothesis Testing Viewpoint

Suppose X = {X1, . . . ,Xn} are drawn IID from some distribution.

The adversary A wants to use M(X ) to test which hypothesis holds:

H0: Xi = y0

• E.g., “Sasho does not smoke”

H1: Xi = y1

• E.g., “Sasho smokes”

Then for any A

P(A(M(X )) = ”H1” | H1)  e
"P(A(M(X )) = ”H1” | H0)
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Randomized Response

Given

• dataset X = {x1, . . . , xn} ✓ X ,

• query q : X ! {0, 1}

output M(X ) = (Y1(x1), . . . ,Yn(xn)), where, independently

Yi (xi ) =

8
<

:
q(xi ) w/ prob. e"

1+e"

1� q(xi ) w/ prob. 1
1+e"

.
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Privacy Analysis

ETS for any y 2 {0, 1}n, and any neighbouring X ,X 0

P(M(X ) = y)  e
"P(M(X 0) = y).
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Accuracy Analysis

Want to approximate q(X ) = 1
n

Pn
i=1 q(xi ). Claim:

1
n

Pn
i=1

(1+e")Yi�1
e"�1 ⇡ q(X )
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