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Classification Basics



The learning problem

Problem: develop an algorithm that classifies avocados into ripe and unripe.

We have a big data set of avocado data. For each avocado, we have:

• colour, firmness, size, shape, skin texture, . . .

• ripe or not

From this data, we want to classify unseen avocados.
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The learning problem, formally

Model:

• Known data universe X and an unknown probability distribution D on X

• Known concept class C and an unknown concept c 2 C

• We get a dataset X = {(x1, c(x1), . . . , (xn, c(xn)}}, where each xi is an

independent sample from D.

Goal: Learn c from X .
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The goal, formally

The error of a concept c 0 2 C is

LD,c = Px⇠D(c
0
(x) 6= c(x)).

We want an algorithm M that outputs some c 0 2 C and satisfies

P(LD,c(M(X ))  ↵) � 1� �.
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Empirical risk minimization

Issue: We want to find argminc 02C LD,c(c 0), but we do not know D, c .

Solution: Instead we solve argminc 02C LX (c 0), where

LX (c
0
) =

|{i : c 0(xi ) 6= c(xi )}|
n

is the empirical error.

Theorem (Uniform convergence)
Suppose that n � ln(|C |/�)

2↵2 . Then, with probability � 1� �,

max
c 02C

LX (c
0
)� LD,c(c

0
)  ↵.
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Private learning

In private PAC learning, we require that

• when X is a sample of iid labeled data points, we learn the correct concept, as in

stadard PAC learning;

• the learning algorithm is "-di↵erentially private for any labeled data set

X 2 (X ⇥ C )
n
.
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Want to do ERM we e - DP

i. e. ( approximately ) minimize
↳ ( c ' ) =
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Exponential mechanism



Private ERM

We want to solve argminc 02C LX (c 0).

How do we minimize with di↵erential privacy?

Sample concepts with less error with higher probability

P(M(X ) = c 0) / exp

⇣
�"n

2
LX (c

0
)

⌘
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Exponential Mechanism

General set-up: score function u : X ⇥ Y ! R

Sensitivity

�u = max
y2Y

max
X⇠X 0

|u(X , y)� u(X 0, y)|.

The mechanism Mexp(X ) which outputs a random Y so that

P(Y = y) =
e"u(X ,y)/2�u

P
z2Y e"u(X ,z)/2�u

is "-di↵erentially private
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Privacy analysis
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Accuracy of the exponential mechanism

OPT(X ) = max
y2Y

u(X , y)

Then, for the output Y = Mexp(X ),

P(u(X ,Y )  OPT(X )� t) 
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Private Learning



Unknown distribution D ou known R
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Putting things together

A concept class C can be learned by an eps-di↵erentially private mechanism when the

sample size is

n � max

⇢
4 ln(2|C |/�)

"↵
,
2 ln(2|C |/�)

↵2

�
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Putting things together
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