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1 Introduction

Private data analysis is concerned with studying mechanisms that enable the analysis of datasets
containing sensitive information in a way that provides useful information about the data as a whole,
without compromising the privacy of any individuals in the dataset. One could consider many
potential definitions of privacy, often concerned with legal, ethical, and otherwise philosophical
aspects of privacy. We will focus on definitions of privacy that lend themselves to mathematical
analysis, through the framework of differential privacy.

For now, we will hold off on providing a precise, mathematical definition of privacy. Instead, we will
look at a few scenarios in which we can definitely say that we do not have any privacy protection,
because we can describe attacks that recover the private data. Even though we have not yet defined
exactly what privacy is, it will be clear that algorithms that make these attacks possible do not
satisfy reasonable definition of privacy. This will provide some motivation for technical definitions
of privacy that we will see later.

1.1 The Setup

In all of our examples, we will consider a database represented by a sequence X ∈ X n of n data
points (or database rows), where X is the universe of possible data points. We will typically have
X = {0, 1}d for some d, in which case X is an n× d table of boolean values. The notation xi refers
to the ith row of X. Typically, we think of a row xi of a database as a record containing sensitive
information about a single person.

Next, we assume that the database X is held by a trusted curator. Rather than directly accessing
data in X, we issue queries q1, q2, . . . , qm to the curator, where each query comes from some class
of functions. The curator answers queries q1, . . . , qm according to some algorithm or “mechanism”
M(X, q1, . . . , qm) that outputs approximations to q1(X), . . . , qm(X). Some examples of queries
that we might want to consider are counting queries: Given some predicate q : X → {0, 1},

q(X) =
1

n

n∑
i=1

q(xi)

is the fraction of rows in X that satisfy q. (Note that we have slightly overloaded the notation.)

In a broad sense, we wish to design mechanisms M that enable us to compute useful statistics
from our data X, while preventing privacy attacks that might dissuade people from contributing
to the database. Thus the central question of private data analysis is: If we can query a database
via “aggregate” queries q—that is, they don’t depend “too much” on individual rows—can we
approximate q(X) without revealing too much about any individual row xi? One of our goals will
be to state this question precisely and mathematically.
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Figure 1: The setting in which we describe attacks on alleged private mechanisms M.

2 Attacks on Simple Mechanisms

2.1 Reconstruction Attack Against Correlation Queries

In this section we consider some negative results, by studying reconstruction attacks. The goal
of a reconstruction attack is to reconstruct most of the rows of a database from noisy answers to
certain queries. This will provide us with examples of (blatant) non-privacy, introduced by Dinur
and Nissim in [2].

Suppose that each database row has the form xi = (yi, bi), where yi ∈ Y is some identifying infor-
mation already known to the attacker, and bi ∈ {0, 1} is a secret bit encoding private information.
We assume that the y values are all distinct. We will consider correlation queries on a database
X ∈ X n over the universe X = Y × {0, 1}.

Definition 1. Let π : Y → {0, 1} be a predicate over the the known information. Then the
correlation query associated with π is defined by

qπ(X) =
1

n

n∑
i=1

π(yi)bi.

In other words, a correlation query asks “What fraction of the database rows satisfy the predicate
π and have their sensitive bit set to 1?” Intuitively, such questions give only aggregate information
about the sensitive bits. The reconstruction attacks show that, only using the already known
information given by the yi, and these aggregate correlation queries, the attacker can reconstruct
most of the private bits.

To quantify the distance between two bit vectors, we use the normalized hamming distance.

Definition 2. Let b, b′ ∈ {0, 1}n. The normalized hamming distance between b and b′ is given by
dH(b, b′) = 1

n |{i : bi 6= b′i}|.

The following theorem will show that, given noisy answers to every possible correlation against a
database with n rows, it is possible to reconstruct most of the original database.
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Theorem 3. Let α ∈ [0, 1], and suppose that, for every predicate π : Y → {0, 1}, the attacker is
given an approximate answer aπ ∈ R to the correlation query such that |aπ − qπ(X)| ≤ α. Then
the attacker can compute a b′ such that dH(b, b′) ≤ 4α.

Proof. Given aπ for every π : Y → {0, 1} as in the statement of the theorem, the reconstruction
attack will be to simply output any b′ ∈ {0, 1}n such that∣∣∣∣∣aπ − 1

n

n∑
i=1

π(yi)b
′
i

∣∣∣∣∣ ≤ α ∀π : Y → {0, 1}. (1)

First, note that the attacker can indeed check (1), because y1, . . . , yn are known to him. Second,
note that a b′ satisfying (1) must exist, since, by our assumption on the aπ, b satisfies (1) (as do,
potentially, many other bit vectors). Finally, note that the conditions above imply that, for any
π : Y → {0, 1}, ∣∣∣∣∣qπ(X)− 1

n

n∑
i=1

π(yi)b
′
i

∣∣∣∣∣ ≤ |qπ(X)− aπ|+

∣∣∣∣∣aπ − 1

n

n∑
i=1

π(yi)b
′
i

∣∣∣∣∣ ≤ 2α. (2)

To show that b′ is indeed an approximate reconstruction of b, we bound the normalized hamming
distance between the two vectors. Let us consider two predicates π10 and π01 defined to take value
0 on Y \ {y1, . . . , yn}, and defined to take the following values on {y1, . . . , yn}:

π10(yi) =

{
1 b′i = 1, bi = 0

0 otherwise
,

π01(yi) =

{
1 b′i = 0, bi = 1

0 otherwise
.

We now have

dH(b, b′) =
1

n
|{i : b′i = 1, bi = 0}|+ 1

n
|{i : b′i = 0, bi = 1}|

=
1

n

n∑
i=1

π10(yi)b
′
i − qπ10(X) + qπ01(X)− 1

n

n∑
i=1

π01(yi)b
′
i

≤ 2α+ 2α = 4α.

In the final inequality we used (2).

While the above theorem certainly demonstrates that the private data can be reconstructed from
noisy answers to correlation queries, the attack is not exactly computationally feasible, requiring
noisy answers to all possible correlation queries. We will see that this can be improved, by showing
that it is possible to approximately reconstruct the private data using only a number of correlation
queries that is at most linear in the size of X. In the proof, we will use the following lemma.

Lemma 4. Let Z1, . . . , Zn be independent random variables such that for all i, we have |Zi| ≤ 1,
and let Z = Z1 + · · ·+ Zn. There exists an absolute constant c > 0 such that, for any θ ≥ 0,

Pr[|Z| ≥ θ
√
E[Z2]] ≥ c(1− θ2)2

1 + (1/E[Z2])
.
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Proof. Our strategy is to apply the Paley-Zygmund inequality, which tells us that

Pr[|Z| ≥ θ
√

E[Z2]] = Pr[|Z|2 ≥ θ2E[Z2]] ≥ (1− θ2)2E[Z2]2

E[Z4]
. (3)

In order to use the inequality, we need to show that E[Z4] is not much larger than E[Z2]2. This is
easier to show directly when the summands have expectation 0, so we will first center our variables
Zi by subtracting their expectations, and show the bound on the fourth moment of the centered
variables. Then we will come back to the original variables.

Let us then write Yi = Zi − E[Zi], and let Y = Y1 + · · ·+ Yn. We make the following observations:

• the Yi are independent;

• |Yi| ≤ |Zi|+ |E[Zi]| ≤ 2 for all i;

• E[Yi] = 0 for all i, and, therefore, E[Y ]− 0;

• Z = Y + E[Z];

• E[Z2] = E[Y 2] + E[Z]2.

By independence, and since each Yi has expectation 0, we have that, for any i 6= j, E[YiYj ] =
E[Yi]E[Yj ] = 0. Therefore, we have

E[Y 2] =

n∑
i=1

E[Y 2
i ].

Similarly, using the multinomial theorem, and the observation that, for any i 6= j, E[Y 3
i Yj ] =

E[Y 3
i ]E[Yj ] = 0, we have the following bound.

E[Y 4] =
n∑
i=1

E[Y 4
i ] + 12

∑
i<j

E[Y 2
i ]E[Y 2

j ]

= 6E[Y 2]2 +
n∑
i=1

(
E[Y 4

i ]− 6E[Y 2
i ]2
)

≤ 6E[Y 2]2 +
n∑
i=1

(
4E[Y 2

i ]− 6E[Y 2
i ]2
)

≤ 6E[Y 2]2 + 4
n∑
i=1

E[Y 2
i ] = 6E[Y 2]2 + 4E[Y 2]. (?)

Here, in the third line, we used |Yi| ≤ 2 to derive Y 4
i ≤ 4Y 2

i .

Returning to Z, we have

E[Z4] = E[(Y + E[Z])4]

≤ 8E[Y 4] + 8E[Z]4

≤ 48E[Y 2]2 + 32E[Y 2] + 8E[Z]4

≤ 48(E[Y 2]2 + E[Z]4) + 32E[Z2]

≤ 48(E[Y 2] + E[Z]2)2 + 32E[Z2] = 48E[Z2]2 + 32E[Z2]. (?)
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Above, in the second line we used the inequality (a+ b)4 ≤ 8a4 + 8b4, valid for all real numbers a
and b. Then the third line follows from (?), the fourth line from E[Y 2] ≤ E[Z2], and the fifth line
follows from the inequality a2 + b2 ≤ (|a|+ |b|)2, also valid for all for all real numbers a and b.

Now we can plug back into (3), and we get

Pr[|Z| ≥ θ
√

E[Z2]] ≥ (1− θ2)2 E[Z2]2

48E[Z2]2 + 32E[Z2]
≥ (1− θ2)2

48
(

1 + 1
E[Z2]

) .
Theorem 5. Fix any α ∈ (0, 1). For any y1, . . . , yn, there exist k = O(n) predicates π1, . . . , πk :
Y → {0, 1} such that, given a1, . . . , ak satisfying |ai − qπi(X)| ≤ α√

n
for all i, the attacker can

compute a b′ ∈ {0, 1}n such that dH(b, b′) ≤ O(α2).

Proof. Let k be some integer, whose value will be determined later. Choose correlation queries
π1, . . . , πk independently and uniformly at random from the set all possible predicates. In other
words, for each i, and each y ∈ Y, we independently pick πi(y) to be 0 with probability 1

2 , and
1 with probability 1

2 . The idea will be to show that, when k is sufficiently large, these predicates
satisfy the conditions of the theorem with high probability.

The attack itself is similar to the one we already saw. Given a1, . . . , ak, the attacker outputs any
b′ ∈ {0, 1}n such that ∣∣∣∣∣∣ai − 1

n

n∑
j=1

πi(yj)b
′
j

∣∣∣∣∣∣ ≤ α√
n
∀i

Once again, the attack can be executed because it only involves information known to the attacker;
also, there necessarily exists a bit vector b′ satisfying the conditions above, because b is one such
bit vector.

As before, the definition of the attack implies that b′ satisfies that, for every i,∣∣∣∣∣∣qπi(X)− 1

n

n∑
j=1

πi(yj)b
′
j

∣∣∣∣∣∣ ≤ |qπi(X)− ai|+

∣∣∣∣∣∣ai − 1

n

n∑
j=1

πi(yj)b
′
j

∣∣∣∣∣∣ ≤ 2α√
n
.

Unwrapping the definition of qπi(X), this is equivalent to∣∣∣∣∣∣
n∑
j=1

πi(yj)(bj − b′j)

∣∣∣∣∣∣ ≤ 2α
√
n ∀i. (4)

We want to show that the bounds (4) imply that, with high probability, dH(b, b′) = O(α2).

Towards this goal, let us fix some b′ such that dH(b, b′) ≥ Cα2, where C is a parameter whose value
will be determined later. We will show that the probability that b′ satisfies (4) is very low. We
have that, for any i, the random variable

Z =
n∑
j=1

πi(yj)(bj − b′j)
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is a sum of the independent random variables Zj = πi(yj)(bj − b′j). Then

E[Z2] ≥ Var(Z) =
n∑
j=1

Var(Zj) =
n∑
j=1

(bj − b′j)2

4
≥ Cα2n

4
,

where we used the fact dH(b, b′) = 1
n

∑n
j=1 (bj − bj)2. By Lemma 4, we have

Pr

[
|Z| ≥

√
Cα
√
n

4

]
≥ c′

1 + 4
Cα2n

≥ c′′,

for some absolute constants c′, c′′ > 0, and any large enough n. Therefore, for C ≥ 64,

Pr

∣∣∣∣∣∣
n∑
j=1

πi(yj)(bj − b′j)

∣∣∣∣∣∣ ≥ 2α
√
n

 ≥ c′′.
So far, we showed that a single query rules out b′ as a candidate reconstruction with constant
probability. Now, the probability that no query rules out b′ is bounded as

Pr

∀i
∣∣∣∣∣∣
n∑
j=1

πi(yj)(bj − b′j)

∣∣∣∣∣∣ ≤ 2α
√
n

 ≤ (1− c′′)k ≤ e−c′′k.

Letting k ≥ (2n + 1) ln(2)/c′′, the right hand side is bounded by 2−2n−1. Taking a union bound
over all 22n possible pairs b, b′ yields

Pr

∃b, b′ ∀i
∣∣∣∣∣∣
n∑
j=1

πi(yj)(bj − b′j)

∣∣∣∣∣∣ ≤ 2α
√
n

 ≤ 1

2
.

Since a random choice of the predicates π1, . . . , πk works with constant probability, then, certainly,
there exists such a choice.

2.2 Tracing Attack

Tracing attacks are another form of attack in which an adversary tries to guess whether or not an
individual is in the database, rather than attempting to reconstruct the entire database. That is,
given the answers to a set of queries, the adversary wishes to determine a particular row xi of the
database X, perhaps using some auxiliary information. This type of tracing attack was studied by
Homer et al. [4] in the context of genetic data. It is also very closely related to fingerprinting codes
in cryptography, introduced by Boneh and Shaw [1], with a tight construction due to Tardos [5].

For the purposes of tracing attacks, we will consider marginal queries. We assume that the database
X is over the universe X = {0, 1}d. A marginal query q takes as parameters the database X, along
with an index j, and is defined by

q(X, j) =
1

n

n∑
i=1

xij ,

the fraction of rows in X whose jth column is equal to 1. We have the following, attack, due to
Dwork et al. [3]. Here, a “nice” distribution is what the authors refer to as a strong distribution,
as defined in [3].
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Theorem 6. Let d ≥ (Cn2 log 1
δ )/α. Let p = (p1, . . . , pd), where each pi is drawn independently

from some “nice” distribution, and generate X so that xij = 1 with probability pj, and xij = 0 with
probability 1− pj.

If M is an algorithm such that, for all X, j, |M(X, j) − q(X, j)| ≤ α, then there is an algorithm
A such that

Pr[∃i A(xi,M(X, 1), . . . ,M(X, d), p) = IN] ≥ 1− δ.

Moreover, if y is drawn from the same distribution as x1, . . . , xn (but independently from them),
then

Pr[A(y,M(X, 1), . . . ,M(X, d), p) = IN] ≤ δ.

The attack is in fact very simple. For some τ = Θ(
√
d log 1/δ), the algorithm A(y, q1, . . . , qd, p)

says IN if and only if
d∑
i=1

(yi − pi)qi ≥ τ.

I.e., the attacker simply checks that y is better correlated with the output q of M(X) than the
distribution p. The analysis is involved: check [3] for the details.
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