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Here we collect some useful probability facts. In addition to them, you should review basic probability
theory, e.g., definition of a probability space, independence, conditional probability, expectation, conditional
expectation.

1 Some Continuous Probability Distributions

Remember that we can define a continuous probability distribution on Rk (i.e., k-dimensional space) by a
probability density function (pdf) p : Rk → R, where p must satisfy ∀z : p(z) ≥ 0, and∫

Rk

p(z)dz =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(z)dz1 . . . dzk = 1.

The pdf p defines the probability distribution of a random variable Z ∈ Rk by

P(Z ∈ S) =

∫
S

p(z)dz =

∫
Rk

1S(z)p(z)dz,

for any (measurable) S ⊆ Rk, where 1S(z) is the function which takes value 1 on z ∈ S and 0 on z 6∈ S.

We will use the following continuous probability distributions often:

• The Laplace distribution Lap(µ, b) on R with expectation µ and scale parameter b > 0 has pdf

p(z) =
1

2b
e−|z−µ|/b.

• The multivariate Laplace distribution on Rk with mean µ ∈ Rk and scale parameter b ∈ R, b > 0 has
pdf

p(z) =
1

(2b)k
e−‖z−µ‖1/b,

where ‖z − µ‖1 =
∑k
i=1 |zi − µi| is the `k1 norm.

• The Gaussian (normal) distribution N(µ, σ2) on R with expectation µ and variance σ > 0 has pdf

p(z) =
1√
2πσ

e−(z−µ)2/(2σ2).

• The multivariate Gaussian distribution N(µ,Σ) on Rk with mean µ ∈ Rk and k × k (non-singular)
covariance matrix Σ has pdf

p(z) =
1

(2π)k/2
√

det(Σ)
e−(z−µ)>Σ−1(z−µ)/2.

In particular, the spherical Gaussian is the special case when the coordinates are independent, i.e.,
Σ = σ2I, where I is the k × k identity matrix, and σ > 0. Then we have

p(z) =
1

(2π)k/2σk
e−‖z−µ‖

2
2/(2σ

2),

where ‖z − µ‖2 =
√∑k

i=1 (zi − µi)2 is the `k2 norm.
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2 Concentration Bounds

We will also need ways to argue that a random variable is not far from its expectation. First, some bounds
for Laplace and Gaussian distributions.

• If Z ∈ R is a Laplace random variable from Lap(µ, b), then

P(|Z − µ| ≥ t) = e−t/b.

• If Z ∈ R is a Gaussian random variable from N(µ, σ2), then

P(|Z − µ| ≥ t) ≤ 2e−t
2/(2σ2).

Better bounds are known, but this one is easy to prove and suffices for our purposes.

Next, some bounds that hold more generally.

• Markov’s inequality : For any real random variable Z ≥ 0, we have

P(Z ≥ t) ≤ E[Z]

t
.

• Chebyshev’s inequality : For any real random variable with expectation µ and variance σ2, we have

P(|Z − µ| ≥ t) ≤ σ2

t2
.

• Hoeffding’s inequality : for any independent random variables Z1, . . . , Zn, such that Zi ∈ [`i, ui], we
have

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi]

∣∣∣∣∣ ≥ t
)
≤ 2e−2n2t2/(

∑n
i=1 (ui−`i)2).

In particular, if each Zi is in [`, u], then

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi]

∣∣∣∣∣ ≥ t
)
≤ 2e−2nt2/(u−`)2 .

3 Sums of Gaussians

The Gaussian distribution has many special properties. We will use one of them frequently.

• Sum of Gaussians is Gaussian: if Z1, . . . , Zk ∈ R are jointly Gaussian, i.e., Z = (Z1, . . . , Zk) is
distributed according to N(µ,Σ) for some µ and Σ, then for any fixed a1, . . . , ak, the random variable∑k
i=1 aiZi is Gaussian with mean

∑k
i=1 aiµi and variance

∑k
i=1

∑k
j=1 aiajΣi,j .

• As a special case, let’s say Z1, . . . , Zk ∈ R are independent Gaussian random variables, each with mean
µ and variance σ2. Then, for any fixed a1, . . . , ak, the random variable

∑k
i=1 aiZi is Gaussian with

mean µ
∑k
i=1 ai and variance σ2

∑k
i=1 a

2
i .
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