
CSC2419:Algorithms and Complexity in Private Data Analysis Winter 2017

Lecture 6 — February 28, 2017

Aleksandar Nikolov Scribe: Ian Mertz

0 Recap

Definition 1. The query relase problem is defined by a set of m linear queries q1 . . . qm over the
database s ∈ X n, where qi(x) = 1

n

∑
j∈[n] qi(xj). The goal is to minimize n while still being able

to publish M(x) for some f such that |M(x)i − qi(x)| ≤ α for all i, with a guarantee that M is
ε-differentially private, or (ε, δ)-differentially private.

While we are primarily interested in minimizing n (as a function of the size of the universe |X |), we
also make note of the runtime of our ε–DP algorithm. Oftentimes to guarantee a better n we take
huge tradeoffs in our algorithm, to the point where on a moderately large universe the problem is
intractable. So far we have two examples of this tradeoff:

• Laplace mechanism: M(x)i = qi(x) + Lap(1
εn) for all i, where Lap(1

εn) ∝ εn
2 e
−|y|εn. In other

words, we just add independent Laplace noise to every query. This is ε–DP with error α for
n = Ω

(
m
αε

)
, and the algorithm takes time O(nm) in total.

• SmallDB: use the exponential mechanism to generate synthetic databases of size roughly
log |X|, and then sample a database from among them that gives very similar answers to

all queries qi. This is ε–DP with error α for nΩ
(
logm log |X |

α3ε

)
, and the algorithm takes time

exponential in logm log |X |
α2 .

Is it possible to get n to be on the order of logm log |X |
αO(1)ε

without running in time which is super-

polynomial in |X |? It turns out in many cases we can’t hope for better than |X |O(1), but we can
remove the dependance on m in the exponent, which provides a huge runtime improvement over
SmallDB while getting a similar lower bound on n. The idea will be to “learn” the database from
(noisy) answers to as few queries as possible, and use this new database to answer the remaining
queries instead. We save the details of the learning algorithm for the end, as it uses fairly standard
techniques that are less relevant to the differential privacy side of the overall algorithm for generating
M(x).

1 Using the learning algorithm

For the purposes of this algorithm it helps to think of the database x ∈ X n as a distribution
over the universe X as follows: for all r ∈ X let pr = |{i:r=xi}|

n . From here we can see that
qi(x) =

∑
r∈X qi(r)pr, which we henceforth denote as the inner product 〈qi, p〉. At a high level our

algorithm is going to iteratively generate new learned vectors pi whose rth entry is the current
approximation of pr, and then seek out a query on which q(x) and 〈q, pi〉 greatly differ, using that
query for the next learning step.

1

Algorithm 1. We define U : [0, 1]n × {qi} × [0, 1] → [0, 1]n to be our learning algorithm, and
L = L(α, |X |) to be determined later.

1. Let p0 be defined by p0r = 1
|X | for any r ∈ X , i.e. p0 is the uniform distribution on X .

2. For t = 1 . . . L:

(a) sample it ∝ exp(
|qit (x)−〈qit ,p

t−1〉
2ε0/n

) and let yt = qit(x) + Lap(1
εn).

(b) If |yt − 〈qit , pt−1〉| > 2α, set pt = U(pt−1, qit , yt).

(c) Otherwise output M(x) = (〈q1, pt−1〉, . . . , 〈qm, pt−1〉) and terminate.

3. Output M(x) = (〈q1, pL〉, . . . , 〈qm, pL〉)

We now proceed to verify both the privacy guarantee and accuracy of our algorithm, as well as
the follwing properties necessary for U to function properly: ∀t, |qit(x)− yt| ≤ α, and ∀t, |qit(x)−
〈qit , pt−1〉| > α. (The first property says that each yt is an accurate approximation of qit ; the second
says that qit distinguishes the true database from pt−1.)

1.1 Privacy

Because we used the exponential mechanism in sampling it and the Laplace mechanism in generating
yt, we have an algorithm that is exactly 2ε0–DP for each iteration, meaning that overall we have
2Lε0–DP, which by a more careful argument based on last week’s methods implies it is (O(

√
L/δ+

Lε20), δ)–DP. Thus by setting ε0 = ε

c
√
L log 1/δ

for large enough c our algorithm is (ε, δ)–DP.

1.2 Accuracy

The learning algorithm U , which we describe in the next section, has the property that if p0, . . . , pk,
qi1 , . . . , qik , and y1, . . . yk are generated so that the following hold:

1. p0 is uniform on X , and for each t > 1, pt = U(pt−1, qit , yt);

2. ∀t, |qit(x)− yt| ≤ α;

3. ∀t, |qit(x)− 〈qit , pt−1〉| > α;

then k ≤ L(α, |X |). In fact, we will show that L(α, |X |) can be taken to be 4 log |X |
α2 . In other words,

this guarantee says that U will learn x after being given at most L distinguishing queries.

By our accuracy analysis of the exponential mechanism (used for sampling it) and the Laplace
mechanism (used in generating yt), with large constant probability it holds that for all t,

|qit(x)− 〈qit , pt−1〉| ≥ max
i
|qi(x)− 〈qi, pt−1〉| −O

(
logmL

nε0

)
(1)

and

|qit(x)− yt| ≤ O
(

logL

nε0

)
. (2)

2

Setting n ≥ C logmL
αε0

for a large enough constant C makes both big-O terms above at most α. Let
us condition on these inequalities holding.

First we consider the error in the event that the algorithm does not terminate early. If algorithm
U is called on the t-th iteration, it must be the case that |qit(x)− yt| ≤ α and

|qit(x)− 〈qit , pt−1〉| ≥ |yt − 〈qit , pt−1〉| − |qit(x)− yt| > α.

Therefore, the conditions for calling U specified above are both satisfied, and, if the algorithm does
not terminate early, then it must be the case that upon termination there exists no query qiL+1

such that |qiL+1(x)− 〈qit , pL〉| > α. I.e. pL answers all queries accurately up to error α.

Now we bound the error when the algorithm does terminate early, say on step t. By the termination
condition, the traingle inequality, and (2), it must be the case that |qit(x) − 〈qit , pt−1〉| ≤ 3α.
Together with (1), this implies that for all queries, pt−1 gives error at most 4α.

Overall, this analysis shows that the algorithm has error at most 4α total error of our algorithm.
Setting ε0 = ε

c
√
L log 1/δ

and L = 4 log |X |
α2 gives an algorithm which is (ε, δ)-DP and accurate on all

queries up to an error of 4α as long as n = Ω

(
logm
√

log |X |
√

log 1/δ

α2ε

)
. Rescaling α appropriately

gives an α-accurate algorithm while increasing the lower bound on n only by a factor of four. This
bound is in general information-theoretically the best possible. The running time is dominated by
that of the learning algorithm, which we describe in the next section.

2 The learning algorithm

We finally arrive at the algorithm U itself. The main property we need to satisfy in designing U
is that it should converge to a good approximation of the true p (which we denote p∗) as fast as
possible, to let us minimize L. By the design of our algorithm we are guaranteed that for all t,
|qit(x)− 〈qit , pt−1〉| > α and |qit(x)− yt| ≤ α, which we will use in our analysis.

Algorithm 2 (U(p, q, y)). Observe that 〈q, p〉−y has the same sign as 〈q, p〉−q(x) by the guarantees
above along with the triangle inequality. Intuitively we will change q to guarantee that p “overshoots”
the correct value of q(x) when taking the inner product with the new q. We then adjust for this by
decreasing the entries of p proportional to how large the corresponding q entries are.

1. If y < 〈q, p〉, q̂ = q, else q̂ := 1
X − q.

2. For all r ∈ X , p̂r = pre
−q̂(r)α/2.

3. Output p̂∑
r p̂r

(where p̂ is the vector with entries p̂r).

This is called the multiplicative weights update method. Notice that this algorithm runs in time
linear in |X |, so the running time of our private mechanism will be O(mnL|X |). While |X | can
be huge (e.g. exponential in the dimensionality of the data), as we mentioned above, running
time polynomial in |X | cannot be avoided in general, under standard cryptographic assumptions.
Nevertheless, we will see in the coming weeks that for special natural classes of queries we can
design even more efficient algorithms.

3

We now state the main technical theorem necessary to prove bounds on L, which gives us our value
of n as well as the runtime for our algorithm.

Theorem 2. Let p∗r = |{i:xi=r}|
n , and let Ψt = DKL(p∗||pt) =

∑
r∈X p

∗
r log p∗r

ptr
. Then

Ψt−1 −Ψt ≥
α2

4

Proof. Note that we can derive the following bounds from standard Taylor approximations for all
x s.t. |x| < 1:

• ex ≤ 1 + x+ x2

• log(1 + x) ≤ x.

Let p = pt−1, p′ = pt (to avoid confusion with exponents in the proof), and likewise let q = qit .

Ψt−1 −Ψt =
∑
r∈X

p∗r(log
p∗r
pr
− log

p∗r
p′r

)

=
∑
r∈X

p∗r log
p′r
pr

=
∑
r∈X

p∗r log
p̂r/

∑
s∈X p̂s

pr

=
∑
r∈X

p∗r log e−q̂(r)α/2
1∑

s∈X p̂s

=
∑
r∈X

p∗r(−q̂(r)
α

2
− log

∑
s∈X

p̂s)

= −α
2
q̂(x)− log

∑
s∈X

pse
−q̂(s)α/2

≥ −α
2
q̂(x)− log

∑
s∈X

ps(1−
α

2
q̂(s) +

α2

4
q̂2(s))

≥ −α
2
q̂(x)− log(1− α

2
〈q̂, p〉+

α2

4
)

≥ −α
2
q̂(x) +

α

2
〈q̂, p〉 − α2

4

=
α

2
(〈q̂, p〉 − q̂(x))− α2

4

≥ α

2
α− α2

4
=
α2

4

Corollary 3. L ≤ 4
α2 log |X |, which implies that n ≥ c logmL

αε0
≥ c′
√

log |X | logm
√

log 1/δ

α2ε
.

Proof. This follows directly from the fact that because p0 was generated uniformly,

Ψ0 =
∑
r∈X

p∗r log(|X |p∗r) = log |X| −
∑
r∈X

p∗r log
1

p∗r
≤ log |X |,

4

along with the fact that Ψt ≥ 0 for all t by the nonnegativity of KL divergence (proved in last
week’s lecture).

5

