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1 Introduction

Private data analysis is concerned with studying mechanisms that enable the analysis of datasets
containing sensitive information in a way that provides useful information about the data as a whole,
without compromising the privacy of any individuals in the dataset. One could consider many
potential definitions of privacy, often concerned with legal, ethical, and otherwise philosophical
aspects of privacy. We will focus on definitions of privacy that lend themselves to mathematical
analysis, through the framework of differential privacy.

For now, we will hold off on providing a precise, mathematical definition of privacy. Instead, we
will look at a few examples of naive mechanisms that do not provide any privacy guarantees, by
describing attacks against these mechanisms. Even though we have not yet defined exactly what
privacy is, it will be clear that these examples of mechanisms do not satisfy reasonable definition
of privacy. This will provide some motivation for technical definitions of privacy that we will see
later.

1.1 The Setup

In all of our examples, we will consider a database represented by a vector X ∈ Un, where n is
the number of rows in the database, and U is the universe of possible rows. We will typically have
U = {0, 1}d for some d, in which case X is an n× d table of boolean values. The notation xi refers
to the ith row of X. Typically, we think of a row xi of a database as a record containing sensitive
information about a single person.

Next, we assume that the database X is held by a trusted curator. Rather than accessing directly
accessing data in X, we issue queries q1, q2, . . . , qm to the curator, where each query comes from
some class of functions of X. The curator answers queries q1, . . . , qm according to some algorithm or
mechanism M(X, q1, . . . , qm) that outputs approximations to q1(X), . . . , qm(X). Some examples of
queries that we might want to consider are counting queries: Given some predicate q : U → {0, 1},

q(X) =
1

n

n∑
i=1

q(xi)

is the fraction of rows in X that satisfy q.

In a broad sense, we wish to design mechanisms M that enable us to compute useful statistics
from our data X, while preventing privacy attacks that might dissuade people from contributing
to the database. Thus the central question of private data analysis is: If we can query a database
via “aggregate” queries q—that is, they don’t depend “too much” on individual rows—can we
approximate q(X) without revealing too much about any individual row xi? One of our goals will
be to state this question precisely and mathematically.
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Figure 1: The setting in which we describe attacks on alleged private mechanisms M.

2 Attacks on Simple Mechanisms

2.1 Reconstruction Attack Against Correlation Queries

In this section we consider some negative results, by studying reconstruction attacks. The goal
of a reconstruction attack is to reconstruct most of the rows of a database from noisy answers to
certain queries. This will provide us with examples of (blatant) non-privacy, introduced by Dinur
and Nissim in [1]. In particular, we will consider correlation queries on a database X ∈ Un over
the universe U = {0, 1}, that is, the universe contains a private bit xi for each person.

Definition 1. Let q = (q1, . . . , qn) ∈ {0, 1}n be some bit vector. The correlation query associated
with q is defined by

q(X) =
1

n

n∑
i=1

qixi.

To quantify the distance between two databases over {0, 1} (or, more generally, bit vectors), we
use the normalized hamming distance.

Definition 2. Let X,X ′ ∈ {0, 1}n. The normalized hamming distance between X and X ′ is given
by dH(X,X ′) = 1

n |{i : xi ̸= x′i}|.

The following theorem will show that, given noisy answers to every possible correlation against a
database with n rows, it is possible to reconstruct most of the original database.

Theorem 3. Let α > 0, and suppose that, for every q ∈ {0, 1}n, we have some yq ∈ R such that
|yq − q(X)| ≤ α. Then we can compute a database X ′ ∈ {0, 1}n such that dH(X,X ′) ≤ 4α.

Proof. Given yq for every q ∈ {0, 1}n as in the statement of the theorem, the reconstruction attack
will be to simply output any database X ′ = (x′1, . . . , x

′
n) ∈ {0, 1}n such that |yq − q(X ′)| ≤ α for

all q ∈ {0, 1}n. We know it must be possible to find such an X ′ since, in particular, the original
database X itself satisfies this condition, as well as potentially many other candidate databases.
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To show that X ′ is indeed an approximate reconstruction of X, we can bound the normalized
hamming distance between the two databases. To do so, consider two queries q1 = X, and q0 =
1−X, where q0 is obtained by flipping all of the bits in X. We then have

dH(X,X ′) =
1

n
|{i : xi = 1, x′i = 0}|+ 1

n
|{i : xi = 0, x′i = 1}|

= q1(X)− q1(X
′) + q0(X

′)− q0(X)

≤ (yq1 + α)− (yq1 − α) + (yq0 + α)− (yq0 − α)

= 4α.

While the above theorem certainly demonstrates that a database can be reconstructed from noisy
answers to correlation queries, the attack is not exactly computationally feasible, requiring noisy
answers to all possible correlation queries. We will see that this can be improved, by showing that
it is possible to approximately reconstruct a database using only a number of correlation queries
that is at most linear in the size of X. In the proof, we will use the following lemma.

Lemma 4. Let Z1, . . . , Zn be independent random variables such that for all i, we have |Zi| ≤ 1,
and let Z = Z1 + · · · + Zn. There exists an absolute constant d such that Pr[|Z| ≥ σ/10] ≥
d/
(
1 +O

(
1/σ2

))
, where σ2 = Var(Z).

Proof. We have two cases to consider.

Case 1. |E[Z]| ≥ σ
10 . Since E[|Z|] ≥ |E[Z]|, we have Pr[|Z| ≥ σ

10 ] ≥ Pr[|Z| ≥ 1
10E[|Z|]. Applying

the Paley-Zygmund inequality gives us

Pr
[
|Z| ≥ σ

10

]
≥
(
1− 1

10

)2 E[|Z|]2

E[Z2]
≥ 81

100
· E[Z]2

100E[Z]2 + E[Z]2
> 10−4.

Case 2. |E[Z]| < σ
10 . For each i ∈ [n] let Yi = Zi − E[Zi], and let Y = Y1 + · · · + Yn, so that,

for all i, we have E[Yi] = 0 and V ar(Yi) = V ar(Zi) = E[Y 2
i ]. Moreover, for each i, we have

|Yi| ≤ |Zi|+ |E[Zi]| ≤ 2.

Next, we can upper bound the fourth moment of Y as follows, by applying the multinomial theorem
and independence.

E[Y 4] ≤
n∑

i=1

E[Y 4
i ] + 12

∑
i<j

E[Y 2
i ]E[Y 2

j ]

= 6E[Y 2]2 +
n∑

i=1

(
E[Y 4

i ]− 12E[Y 2
i ]

2
)

≤ 6E[Y 2]2 +

n∑
i=1

(
4E[Y 2

i ]− 12E[Y 2
i ]

2
)

≤ 6E[Y 2]2 + 4

n∑
i=1

E[Y 2
i ]

≤ 6E[Y 2]2 + 4E[Y 2]. (⋆)
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Returning to Z, we have

Pr
[
|Z| ≥ σ

10

]
= Pr

[
|Z| − |E[Z]| ≥ σ

10
− |E[Z]|

]
≥ Pr

[
|Y | ≥ σ

5

]
= Pr

[
Y 2 ≥ σ2

25

]
= Pr

[
Y 2 ≥ 1

25
E[Y 2]

]
.

Applying the Paley-Zygmund inequality to Y 2 and substituting (⋆) yields

Pr
[
|Z| ≥ σ

10

]
≥
(
24

25

)2 E[Y 2]2

E[Y 4]

≥
(
24

25

)2 E[Y 2]2

6E[Y 2]2 + 4E[Y 2]

=

(
24

25

)2 σ4

6σ4 + 4σ2

=

(
24

25

)2 1

1 +O
(

1
σ2

) .
Theorem 5. There exist m = O(n) queries q1, . . . , qm such that, given y1, . . . , ym such that
|yi − qi(X)| ≤ α√

n
for all i, we can compute a database X ′ ∈ {0, 1}n such that dH(X,X ′) = O(α2).

Proof. Let m be some integer, whose value will be determined later. Choose correlation queries
q1, . . . , qm independently and uniformly at random from {0, 1}n. The idea will be to show that,
whenm is sufficiently large, these queries satisfy the conditions of the theorem with high probability.
Given these queries, along with their answers y1, . . . , yn, the attack will be to output a database
X ′ ∈ {0, 1}n such that |yi − qi(X

′)| ≤ α√
n
for all i.

Let qij denote the jth bit of qi. Now, fix any X ′ = (x′1, . . . , x
′
n) such that dH(X,X ′) ≥ cα2, where

c is a parameter whose value will be determined later. Then

qi(X)− qi(X
′) =

1

n

n∑
j=1

qij(xj − x′j)

is a sum of independent random variables. Now, since dH(X,X ′) ≥ cα2, it follows that
∑n

i=1(xj −
x′j)

2 ≥ cα2n. Therefore, we can compute the variance,

Var
(
qi(X)− qi(X

′)
)
=

1

4n2

n∑
j=1

(xj − x′j)
2

≥ cα2

4n
.

By Lemma 4, we have

Pr

[
|qi(X)− qi(X

′)| ≥ α
√
c

10
√
n

]
≥ d

1 + C
σ2

,
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for some constant C, where σ2 = Var(qi(X)−qi(X
′)) and d is the absolute constant from Lemma 4.

Therefore, the probability that the condition in the expression does not hold for any i is

Pr

[
∀i |qi(X)− qi(X

′)| ≤ α
√
c

10
√
n

]
≤

(
1− d

1 + C
σ2

)m

.

Now, let c2 =
d

1+C/σ2 , and let

m ≥ 2n+ 1

log
(

1
1−c2

) and c ≥ 800.

Substituting these bounds for m and c, it follows that

Pr

[
∀i |qi(X)− qi(X

′)| ≤ 2α√
n

]
≤ 2−2n−1.

Taking a union bound over all 22n possible pairs X,X ′ yields

Pr

[
∃X,X ′ ∀i |qi(X)− qi(X

′)| ≤ 2α√
n

]
≤ 1

2
.

Since, by the triangle inequality, |yi − qi(X)| ≤ α√
n
and |yi − qi(X

′)| ≤ α√
n
implies that |qi(X) −

qi(X
′)| ≤ 2α√

n
, we have

Pr
[
∃X,X ′ dH(X,X ′) ≥ cα2

]
≤ 1

2
.

Thus, if the queries q1, . . . , qm are chosen correctly, which happens with high probability, then the
database X ′ cannot be too far from X.

2.2 Tracing Attack

Tracing attacks, first introduced by Tardos in [3], are another form of attack in which an adversary
tries to guess whether or not an individual is in the database, rather than attempting to reconstruct
the entire database. That is, given the answers to a set of queries, the adversary wishes to determine
a particular row xi of the database X, perhaps using some auxiliary information.

For the purposes of tracing attacks, we will consider marginal queries. We assume that the database
X is over the universe U = {0, 1}d. A marginal query q takes as parameters the database X, along
with an index j, and is defined by

q(X, j) =
1

n

n∑
i=1

xij ,

the fraction of rows in X whose jth column is equal to 1. We have the following, attack, due to
Dwork et al. [2]. Here, a “nice” distribution is what the authors refer to as a strong distribution,
as defined in [2].
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Theorem 6. Let d ≥ (Cn2 log 1
δ )/α. Let p = (p1, . . . , pd), where each pi is drawn independently

from some “nice” distribution, and generate X so that xij = 1 with probability pj, and xij = 0 with
probability 1− pj.

If M is an algorithm such that, for all X, j, |M(X, j) − q(X, j)| ≤ α, then there is an algorithm
A such that

Pr[∃i A(xi,M(X, 1), . . . ,M(X, d), p) = IN] ≥ 1− δ.

Moreover, if y is drawn from the same distribution as x1, . . . , xn (but independently from them),
then

Pr[A(y,M(X, 1), . . . ,M(X, d), p) = IN] ≤ δ.
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