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• Two main approaches for constructing 

Bayesian networks (BNs) in practice:

 Fully specified by domain expert

 Learned directly from observed data

• Issues: experts rarely have complete 

domain knowledge; data can be limited or 

expensive.

• Hybrid BN structure learning methods that 

incorporate both data and expert 

knowledge have produced superior results 

in many fields [1,2].

• Local search methods for BN structure 

learning are orders of magnitude faster 

than exact methods, and consistently find 

near-optimal solutions [3].

Introduction

Our Proposal

Our Proposal

Experimental Evaluation
Instance N % MINOBSx 

(time in seconds)

CaMML

(time in seconds)

asia

8 vars

18 params

250

10 / 5 1.1 / 0.5
5.8 / 5.4

100 / 20 0.5 / 0.2
8.3 / 5.7

1000

10 / 5 0.9 / 0.4
5.5 / 5.0

100 / 20 0.4 / 0.2
7.3 / 5.6

insurance

27 vars

984 params

500

10 / 5
180.5 / 104.9 439.5 / 325.3

100 / 20
292.5 / 37.4 2052.3 / 571.7

2000

10 / 5
124.0 / 88.3 438.5 / 309.8

100 / 20
233.1 / 33.4 1956.8 / 571.1

barley

48 vars

114,005 params

2000

10 / 5 
2321.4 / 5866.8 19824.8 / 11666.1

100 / 20
7246.6 / 1806.3 114036.7 / 22366.9

8000

10 / 5
4761.1 / 6032.7 18092.6 / 10759.6

100 / 20
5675.6 / 1638.8 111338.4 / 21184.4

Table 1: The time required for our method (MINOBSx) and 

CaMML to complete on various benchmarks. N is the number of 

data points, % is the percentage of constraints sampled. Each 

entry containing a pair corresponds to a run using only ancestral 

constraints (first number in each pair) and using various 

constraints (second number in each pair). 

All networks produced by MINOBSx were feasible (satisfied all 

hard constraints). For CaMML, on the asia instance nearly all 

networks produced were feasible, on the insurance instance the 

majority of networks were infeasible, and on the barley instance, 

all networks were infeasible.

Instance N % Missing

arcs

Extra

arcs

Reversed 

arcs

SID Score

(BDeu)

asia

8 vars

18 params

250

0* 1.5 1.7 1.0 12.2 0%

100 / 20 0.5 / 0.7 1.7 / 1.1 0.0 / 0.2 1.8 / 3.9 0.3% / 0.3%

1000

0* 0.8 0.3 1.0 9.0 0%

100 / 20 0.0 / 0.2 0.3 / 0.3 0.0 / 0.4 0 / 3.1 0% / 0%

child

20 vars

230 

params

500

0* 5.3 1.0 3.0 115.7 0%

100 / 20 2.2 / 3.6 2.2 / 0.8 0.0 / 0.3 35.8 / 57.6 0.9% / 0.4%

2000

0* 1.7 0.2 3.5 79.2 0%

100 / 20 0.2 / 1.0 0.3 / 0.1 0.0 / 0.0 2.5 / 16.6 0.1% / 0%

barley

48 vars

114,005 

params

2000

0* 32.3 8.2 9.7 949.5 0%

100 / 20 30.2 / 26.4 19.5/11.8 0.0 / 1.5 619.3 / 628.1 2.4% / 3.9%

8000

0* 25.5 3.7 9.7 794.7 0%

100 / 20 20.8 / 19.3 12.0 / 7.0 0.0 / 1.6 457.2 / 507.2 0.9% / 1.8%

Experimental Evaluation

• We compared our method, MINOBSx

against the widely-used CaMML [8], 

another stochastic score-and-search 

approach handling similar constraints.

• MINOBSx was able to quickly find feasible 

solutions to all problems, while CaMML

performed consistently only on small 

problems.

• Networks produced by MINOBSx were 

closer to the ground truth when constraints 

were imposed; the score was also within 

4% of optimal on all cases.

• A pitfall of MINOBSx is that a small parent 

limit (e.g. 3) must be set on large instances.

Table 2: Various accuracy metrics of networks produced by 

MINOBSx. Instances with no constraints (marked by 0*) were 

optimally solved using GOBNILP [6]. SID measures the difference 

in causal statements between two networks [7]. The score column 

gives the % difference in score between the learned network and 

the optimal network produced by GOBNILP (with no constraints). 

Conclusion
• We present a novel approximate method 

for incorporating prior knowledge 

constraints into BN structure learning, 

including non-decomposable ancestral 

constraints.

• Previous exact methods for incorporating 

ancestral constraints could handle up to 

twenty random variables [4]; we show our 

method scales to nearly fifty random 

variables while producing high quality 

networks.
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