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We study how RL agents can exploit ground-truth state information available dur- I D .
ing training in partially observable environments. We propose a novel algorithm OImains
and outperform baselines.
v We assume ground-truth state information is available at training time, but L
not deployment time.
v We observe that existing algorithms get stuck in local optimum, especially in . . Fig. 1: Goal: reach the box Fig. 2: Goal: eat as many Fig. 3: Goal: Find the exit
problems that require information-seeking behavior 1. Representation Learning containing +1 reward on cookies as possible that gen- pointed to by statues across
, , Goal: Learn a combact neural representation ¢(s ) of state each episode. 8 x 8 x 3 grid. erates in one of three hall- the map. Continuous-state,
v We prOP 05€4d H.leth()d ﬂ.le.lt learns a belief over a comp aC.t state repr e?sentatlon, ) P P : ) NoisyTV variation:  s;,0; ways. Press a button in continuous-action environ-
and train a policy conditioned on the current observation and beliet « Train a representation (¢ (s,), y(o,)) that’s bisimilar to s,, where: flash random colours. Lying the North hallway to spawn ment. Observations repre-
, , , , sphinx variation: sphinx lies cookie. 9 x 9 x 3 grid. sented as 100 x 100 image.
v Experiments show our method works on a variety of challenging environ- 50% of time.
ments, including a high-dimensional continuous state, action environment Task-irrelevant information This information appearsin  discarded
| both s; and o; Main R I
. Task-relevant, observable @ This information appears in (o) atn gs(lil.ts basels L od . q
Introduction information both s, and o, Our metho improves upon baselines Ln a . omains. We compared vs. Recur-
| | | | Task-relevant, This information appears in o (s,) r.ent PPO, Asymmetric Actor-Critic, Unbiased Asymmetric Actor-Critic, Sequen-
Setting: Assume knowledge of underlying ground-truth state information at unobservable information s, but not o, tial VAE. - o - o -
training time. Lo phinx . ookie Lo ying Sphinx Lo oisy phinx Lo scape Room
I D {( p /) 1 : N} 0.8 6 0.8 et 08 0.8 W
. . . . nput: Dataset»=(s;,0;,a;,1;,S;,0;): <1< 0.6 ) 0.6 " o6 0.6 duabl
Motivating Example (Sphinx Domain) repeat g . o g . g . g .
« One of the boxes contains a +1 reward. Sample data (s, 0,a,r,s’,0’) ~». 0.2 2 | 0.2 0.2 0.2
V Can Only Open One .I)OX per GPISOde. . Sample StOChaStiC enCOdingS us v ¢(S)) uo ~ ¢(0)° 0.00 Framezs (miIIionsz)l 00 Frzames (Smillionss) 0 0.00 Framezs (miIIionsz)l 0.00 Framezs (miIIionsZ)l 0.00 Framezs (miIIionsZ)l
v You can ask the sphinx to reveal the correct box for one timestep (-0.2 reward) Predict rewards/dynamics 7, ity it, = g(us, U,, a). —— believer (Ours)  —— Recurent PO —— Asymmetric ActorCritic  — Unbiased Asymmetric ActorCrtic  —— Sequential VAE
Compute stochastic targets u, ~ ¢(s’), u, ~ y(o’).
c,=(r—*1) Ablations
cs = ||stop_grad(u,)— ity||?
£0 — HStOp_grad( uo/) _ I//\to/ ‘2 Lo Sphi:i(cmfo: 0) ‘ Lo Sphinx (Cinfo = 0.1) Lo Sphinx (Cinfo = 0.2) Lo Sphinx (Cinfo = 0.3)
Lxy = KI_[qb ()10, 1)] 0.8 0.8 0.8 0.8
Update ¢,,gonloss Az, + Ao+ Ay + Axrckrs s 5 s 5 :;\;
until convergence "’ .’ "’ .’
O“tpllt: State enCOdel‘ ¢ 0.05 2( - z); 0.05 2( - z); 0.05 2( - z); 0.05 2( - z);
—— Believer (Ours) Recurrent PPO —— Asymmetric Actor-Critic —— Unbiased Asymmetric Actor-Critic
Fig. 4: Varying the cost of information for the Sphinx domains. Most Fig. 5: A visualiza-
. : : 2. Belief Modelling approaches learn to seek information when cost of information is low, tion of various beliet
v Optimal Strategy: Ask the sphinx, remember the correct box, and go to it. . o . but when cost of information is high, only our method can make any states learned in the
« Common Trap: Open a random box for 0.33 return. Goal: Model the belief distribution over compact state features with — Sphinx task.
v Requires: Information-seeking, Memory, Probabilistic Inference VAE.
akeaways
o o o VAE S
Information Seeking Dilemma v oy (@(s) h)= 8 -zl 108 P(2) +10g py(@ ()| h, 2)—log g=(z|¢ (s), h)]
Agent is less likely to ask sphinx Standal‘d PO'RL Our Appl‘()ach
/ \ 3 Poli cy Learning Goal Learn a POMDP policy ﬂ(gt\ht) Learn a POMDP policy ﬂ(.clt\ht)
The agent does not know how to The agent is penalized for Goal: Learn a belief-conditioned policy 71(a, |0, b(/,) Learns Agent learns by observing Agent learns by observing
use the sphinx’s information asking the sphinx. ) P y 22 L) observations and rewards observations, states, and
~_ . v Represent the belief state as k samples from VAE b(h;) = (iiy,..., i) ~ rewards
po(@(s)|h). Predicts | Agent directly predicts actions = Agent predicts belief states
R + values given history. given history, and actions +
. i i ini i v Aggregate the samples: W(b(h,))=W, (l " W1 ) . .
Idea: Use state information as a stronger training signal vs. only rewards gareg p (b(h)) ga\ 70 2icg Wene(y,7) values given belief states.
v Does not require access to states to execute




