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Abstract

Sequence classification is the task of predicting a class la-
bel given a sequence of observations. In many applications
such as healthcare monitoring or intrusion detection, early
classification is crucial to prompt intervention. In this work,
we learn sequence classifiers that favour early classifica-
tion from an evolving observation trace. While many state-
of-the-art sequence classifiers are neural networks, and in
particular LSTMs, our classifiers take the form of finite
state automata and are learned via discrete optimization. Our
automata-based classifiers are interpretable—supporting ex-
planation, counterfactual reasoning, and human-in-the-loop
modification—and have strong empirical performance. Ex-
periments over a suite of goal recognition and behaviour clas-
sification datasets show our learned automata-based classi-
fiers to have comparable test performance to LSTM-based
classifiers, with the added advantage of being interpretable.

1 Introduction
Sequence classification—the task of predicting a class la-
bel given a sequence of observations—has a myriad of
applications including biological sequence classification
(e.g., Deshpande and Karypis 2002), document classifica-
tion (e.g., Sebastiani 2002), and intrusion detection (e.g.,
Lane and Brodley 1999). In many settings, early classifica-
tion is crucial to timely intervention. For example, in hos-
pital neonatal intensive care units, early diagnosis of infants
with sepsis (based on the classification of sequence data) can
be life-saving (Griffin and Moorman 2001).

Neural networks such as LSTMs (Hochreiter and Schmid-
huber 1997), learned via gradient descent, are natural and
powerful sequence classifiers (e.g., Zhou et al. 2015; Karim
et al. 2019), but the rationale for classification can be dif-
ficult for a human to discern. This is problematic in many
domains, where machine decision-making requires a degree
of accountability in the form of verifiable guarantees and ex-
planation for decisions (Doshi-Velez and Kim 2017).

In this work, we use discrete optimization to learn inter-
pretable classifiers that favour early classification. In partic-
ular, we learn a suite of binary classifiers that take the form

*Associated technical appendix appears in (Shvo et al. 2020).
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of finite state automata, each capturing the rationale for clas-
sification in a compact extractable form. To classify a se-
quence of observations, we then employ Bayesian inference
to produce a posterior probability distribution over the set
of class labels. Importantly, our automata-based classifiers,
by virtue of their connection to formal language theory, are
both generators and recognizers of the pattern language that
describes each behavior or sequence class. We leverage this
property in support of a variety of interpretability services,
including explanation, counterfactual reasoning, verification
of properties, and human modification.

Previous work on learning automata from data has fo-
cused on learning minimum-sized automata that perfectly
classify the training data (e.g., Gold 1967; Angluin 1987;
Oncina and Garcia 1992; Ulyantsev, Zakirzyanov, and Sh-
alyto 2015; Angluin, Eisenstat, and Fisman 2015; Gi-
antamidis and Tripakis 2016; Smetsers, Fiterău-Broştean,
and Vaandrager 2018). Nonetheless, such approaches learn
large, overfitted models in noisy domains that generalize
poorly to unseen data. We propose novel forms of regular-
ization to improve robustness to noise and introduce an effi-
cient mixed integer linear programming model to learn these
automata-based classifiers. Furthermore, to the best of our
knowledge, this is the first work that proposes automata for
early classification. Experiments on a collection of synthetic
and real-world goal recognition and behaviour classification
problems demonstrate that our learned classifiers are robust
to noisy sequence data, are well-suited to early prediction,
and achieve comparable performance to an LSTM, with the
added advantage of being interpretable.

In Section 2, we provide necessary background and in-
troduce our running example. In Section 3, we discuss our
method for learning DFA sequence classification models and
elaborate on the interpretability services afforded by these
models in Section 4. In Section 5, we discuss the experimen-
tal evaluation of our approach on a number of goal recogni-
tion and behaviour classification domains, and in Section 6
we situate our work within the body of related work, fol-
lowed by concluding remarks. For detailed discussion of the
data we use in experiments, background on Linear Temporal
Logic, examples of learned automata classifiers, and details
of our experimental setup, the reader is directed to the tech-
nical appendix associated with this work (Shvo et al. 2020).
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2 Background and Running Example
The class of problems we address comprises symbolic time-
series classification problems that require discrimination of
a set of potential classes, where early classification may be
favored, data may be noisy, and an interpretable, and ideally
queryable, classifier is either necessary or desirable.

We define the sequence classification problem as follows.

Definition 2.1 (Sequence Classification) Given a trace
τ = (σ1, σ2, . . . , σn), σi ∈ Σ, where Σ is a finite set of sym-
bols, and C is a set of class labels, sequence classification is
the task of predicting the class label c ∈ C that corresponds
to τ .

The observation trace, τ , is typically assumed to encode
the entire trace. However, we also examine the early clas-
sification setting, where it is desirable to produce a high
confidence classification with a small prefix of the entire
trace (e.g., Griffin and Moorman 2001; Xing, Pei, and Keogh
2010; Ghalwash, Radosavljevic, and Obradovic 2013).

We propose the use of Deterministic Finite Automata
(DFA) as sequence classifiers.

Definition 2.2 (Deterministic Finite Automaton)
A Deterministic Finite Automaton is a tuple M =
〈Q, q0,Σ, δ, F 〉, where Q is a finite set of states, q0 ∈ Q is
the initial state, Σ is a finite set of symbols, δ : Q× Σ→ Q
is the state-transition function, and F ⊆ Q is a set of
accepting states.

Given a sequence of input symbols τ = (σ1, σ2, . . . , σn),
σi ∈ Σ, a DFA M = 〈Q, q0,Σ, δ, F 〉 transitions through
the sequence of states s0, s1, . . . , sn where s0 = q0, si =
δ(qi−1, σi) for all 1 ≤ i ≤ n. M accepts τ if sn ∈ F ,
otherwise,M rejects τ .

A DFA provides a compact graphical encoding of a lan-
guage, a set of (potentially infinite) traces accepted by the
DFA. The class of languages recognized by DFAs is known
collectively as the regular languages. In Section 4 we em-
ploy formal language theory to straightforwardly propose a
set of interpretability services over our DFA classifiers.

We use the following goal recognition problem as a run-
ning example to help illustrate concepts.

Example 2.1 (The office domain) Consider the environ-
ment shown in Figure 1. We observe an agent that starts
at one of A, B, or E with the goal of reaching one of the
other coloured regions, C = {A,B,E,K,♀,♂}, using only
the hallways H1, H2, and H3. The agent always takes the
shortest Manhattan distance path to the goal, choosing uni-
formly at random if multiple shortest paths exist. E.g., an
agent starting at B with goal K will pursue paths (B, H2,
H1 K) and (B, H1, K). We wish to predict the agent’s goal
as early as possible, given a sequence of observed locations.

Figure 1 shows a binary DFA classifier that predicts if an
agent is trying to achieve the K goal in the office domain.
This DFA was learned from the set of all valid traces and
corresponding goals (as stipulated in Example 2.1) using the
method discussed in Section 3. In contrast to the rich body

of work on goal recognition that leverages models of the do-
main to recognize an actor’s goal, here we do not have a
model and instead learn a classifier directly from a given
set of traces. The DFA predicts whether the agent would
achieve the K goal by keeping track of the agent’s locations
over time. Its input symbols are Σ = {A, B, H1, H2, H3,
E, ♀, ♂, K } and the only accepting state is q2 ∈ F . A
decision is provided after each incoming observation based
on the current state: yes for the blue accepting state, and
no for red, non-accepting states. For example, on the trace
(B, H2, H1, K) the DFA would transition through the states
(q0, q3, q0, q2), predicting that the goal is not K after the
first three observations, then predicting the goal is K after
the fourth observation.

Note that this learned DFA leverages biases in the data—
namely, that in the training data the agent only pursues op-
timal paths. However, in addition to correctly classifying
all optimal paths, the DFA also generalizes to some unseen
traces. For example, the DFA correctly classifies the trace
corresponding to the suboptimal path (B, H3, H2, H1, K).

Finally, the DFA in Figure 1 only predicts the goalK once
K is observed. Another DFA trained to detect goal E (not
shown) highlights early detection by predicting goal E once
H3 is observed, unless the agent started at E. This is correct
since when the agent starts at A or B, the observation H3
only appears on optimal paths to E.

3 Learning DFAs for Sequence Classification
In this section, we describe our method for learning DFA
sequence classification models from a set of training traces
and corresponding class labels {(τ1, c1), . . . , (τN , cN )}. We
adopt the standard supervised learning assumption that each
(τi, ci)

iid∼ p(τ, c), and the objective of maximizing the pre-
dictive accuracy of the model over p(τ, c). For each possible
label c ∈ C, we train a separate DFAMc responsible for rec-
ognizing traces with label c (see Section 3.1). At test time,
given a trace (or a partial trace) τ , all |C| DFAs are evaluated
independently on τ , and the collective decisions of the DFAs
are used to produce a posterior probability distribution over
C (see Section 3.2).

3.1 Learning One-vs-Rest Binary Classifiers
We now describe our Mixed Integer Linear Programming
(MILP) model to learn DFAs. We rely on MILP solvers be-
cause they are the state of the art for solving a wide range
of discrete optimization problems and they are guaranteed
to find optimal solutions given sufficient resources (Jünger
et al. 2009).

Given a training set {(τ1, c1), . . . , (τN , cN )}, we learn
one DFA Mc per each label c ∈ C responsible for dis-
criminating traces in class c from traces not in class c.
We start by representing the whole training set as a Pre-
fix Tree (PT) (De la Higuera 2010)—this is a common
preprocessing step in the automata learning literature (Gi-
antamidis and Tripakis 2016). PTs are incomplete DFAs
with no accepting states. They are incomplete in the sense
that some of their transitions are unspecified. Given a train-
ing set {(τ1, c1), . . . , (τN , cN )}, we can construct (in poly-
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Figure 1: Left - Goal recognition environment where the possible goals of the agent are going to an office (A or B), leaving the
building (E), going to the restroom (♀ or ♂), or getting coffee (K). Right - a DFA classifier, learned from traces, that detects
whether or not the agent is trying to reach the goal K. A decision is provided after each new observation based on the current
state: yes for the blue accepting state, and no for the red, non-accepting states. “o/w” (otherwise) stands for all symbols that do
not appear on outgoing edges from a state. “always” stands for all symbols. The DFA is guaranteed to correctly classify traces
from an agent starting in A, B, or E that pursues an optimal path using only the hallways, measured by Manhattan distance. It
also learns to generalize to some traces not seen in training. E.g., the trace (B, H3, H2, H1, K) is accepted and (B, H2, H1, ♂)
is rejected.
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Figure 2: A PT for {b, aa, ab}.

nomial time) a PT that compactly represents all the pre-
fixes from the training traces. In particular, the PT will be
P = 〈N,nε,Σ, δ, ∅〉 such that Σ is the set of symbols in the
training set and, for every training trace τi = (σ1, . . . , σn),
1) there is a node n(σ1,...,σj) ∈ N for all j ∈ {0 . . . n}
(i.e., all prefixes of τi) and 2) the transition function is con-
strained to have δ(n(σ1,...,σj), σj+1) = n(σ1,...,σj+1) for all
j ∈ {2, n − 1} and δ(nε, σ1) = nσ1

. Intuitively, this PT
defines a tree where all training traces are branches. As an
example, Figure 2 shows the PT for a set of training traces
{b, aa, ab} (from Giantamidis and Tripakis (2016)).

Each node in the PT represents a prefix that appears in
one or more training traces. After constructing the PT, we
label its nodes with the number of positive n+ and negative
n− training traces that start with the node’s prefix. Positive
traces are those belonging to the target class c for learning
DFAMc and all other traces are negative traces. In the ex-
ample, if traces b and aa are positive and ab is negative, then
n+ε = 2, n−ε = 1, n+b = 1, n−b = 0, n+a = 1, n−a = 1,
n+aa = 1, n−aa = 0, n+ab = 0, and n−ab = 1. In practice,
we divide the contribution of each τi to n+ or n− by its
length so that longer traces are not overrepresented. We then
use these values to compute the training error in our MILP
model.

Our MILP model takes the PT P = 〈N,nε,Σ, δ, ∅〉, its
nodes counters (n+ and n−), and a positive number qmax

to learn a DFAMc = 〈Q, q0,Σ, F 〉 for class c with at most
qmax states. The main idea is to assign the DFA state reached
by each node in the tree (which represents a sequence of ob-
servations). A binary decision variable xnq , which is equal
to 1 if DFA state q is assigned to node n (and zero otherwise)
encodes this assignment based on the transition function δ.
Our model searches for an assignment of DFA states to the
tree nodes that is feasible (there exists a transition function
δ that generates such an assignment) and has low early pre-
diction error. We predefine a set of accepting states F and
add the error xnqn− if q ∈ F and by xnqn+ if q 6∈ F , for
all n ∈ N .

To reduce overfitting, we limit the maximum number of
DFA states, a common form of regularization in automata
learning (Gold 1967, 1978; Giantamidis and Tripakis 2016).
Additionally, we designate two DFA states—one accept-
ing, and one non-accepting—as absorbing states which can
only self-transition. These states prevent the classifier from
changing decisions once reached. We found that rewarding
nodes for reaching these absorbing states and penalizing the
number of transitions between different DFA states acted
as effective regularizers, significantly improving generaliza-
tion. Further details about the MILP model can be found in
the Technical Appendix § A.

In principle, the binary DFA classifiers learned by the
MILP model can be used directly. However, they would have
deterministic outcomes (i.e., the trace is either accepted or
rejected), might contradict each other (multiple DFAs could
accept the same trace), or might all reject the trace. In the
next section, we address these issues by computing a proba-
bility distribution from the DFAs’ predictions.

3.2 Posterior Inference of the Class Label
Given a trace (or partial trace) τ and the decisions of the one-
vs-rest classifiers {Dc(τ) : c ∈ C}, we use an approximate
Bayesian method to infer a posterior probability distribution
over the true label c∗. Each Dc(τ) is treated as a discrete
random variable with possible outcomes {accept, reject}.
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We make the following assumptions: (1) the classification
decisions Dc for c ∈ C are conditionally independent given
the true label c∗ and (2) p(Dc|c∗) only depends on whether
c = c∗.

For each c′, we compute the posterior probability of c∗ =
c′ to be

p(c∗ = c′|{Dc : c ∈ C}) ∝ p(c∗ = c′) ∗ p(Dc′ |c∗ = c′)

p(Dc′ |c∗ 6= c′)

The full derivation can be found in the Technical Appendix
§ A.3. The probabilities on the right-hand side are estimated
using a held-out validation set. We normalize the posterior
probabilities p(c∗ = c′|{Dc : c ∈ C}) such that their sum
over c′ ∈ C is 1 to obtain a valid probability distribution.

While we present a simple Bayesian inference approach
suitable for low-data settings, more sophisticated ensemble
methods may be leveraged to relax assumption (1). Addi-
tionally, conditioning on the DFA state rather than only the
classifier decision can improve early classification perfor-
mance. We leave this investigation to future work.

3.3 Discussion
In this section, we described an approach to learning DFAs
for sequence classification based on mixed integer linear
programming. Our model includes a set of constraints to
enforce DFA structure, but in general, constraints can also
be added to incorporate domain knowledge. Furthermore,
our formulation is compatible with off-the-shelf optimizers
and as such can benefit from advances in discrete optimiza-
tion solvers. While our approach does not scale as well as
gradient-based optimization, our use of prefix trees signifi-
cantly reduces the size of the discrete optimization problem,
allowing us to tackle real-world datasets with nearly 100,000
observation tokens, as demonstrated in our experiments.

We further show how the decisions of the DFA classi-
fiers can be used to predict a probability distribution over
labels. In our experiments we demonstrate how these prob-
abilities are useful in an early classification setting. Further-
more, we can flexibly handle many important settings in se-
quence classification, including returning the k most proba-
ble class labels and multi-label sequence classification (see
Technical Appendix § C.5).

4 Classifier Interpretability
An important property of our learned classifiers is that they
are interpretable insofar as that the rationale leading to a
classification is captured explicitly in the structure of the
DFA. DFAs can be queried and manipulated to provide a
set of interpretability services including explanation, verifi-
cation of classifier properties, and (human) modification, as
we demonstrate below. Our purpose here is to highlight the
breadth of interpretability services afforded by DFA classi-
fiers via their relationship to formal language theory. The
effectiveness of a particular interpretability service is user-,
domain-, and even task-specific and is best evaluated in the
context of individual domains. We leave detailed study of
this question to a separate paper.

As noted in Section 2, DFAs provide a compact, graphical
representation of a (potentially infinite) set of traces the DFA

positively classifies. Collectively, each DFA defines a regu-
lar language, the simplest form of language in the Chomsky
hierarchy (Chomsky 1956). While many people will find the
DFA structure highly interpretable, the DFA classifier can be
transformed into a variety of different language-preserving
representations including regular expressions, context-free
grammars (CFGs), and variants of Linear Temporal Logic
(LTL) (Pnueli 1977) (see also Technical Appendix § B.3).
These transformations are automatic and can be decorated
with natural language to further enhance human interpreta-
tion.

Example 4.1 The following regular expression compactly
describes the set of traces that are classified as belong-
ing to the DFA classifier depicted in Figure 1: [(Σ −
{♀,♂, H2, H3})∗(H2∪H3)(Σ−{A,B,H1, H2})∗(H1∪
H2)]∗(Σ− {♀,♂, H2, H3})∗KΣ∗

Of course, this regular expression is only decipherable to a
subset of computer scientists. We include it in order to il-
lustrate/demonstrate the multiple avenues for interpretation
afforded by our DFA classifiers. In particular, the regular
expression can be further transformed into a more human-
readable form as illustrated in Example 4.2 or transformed
into a CFG that is augmented with natural language in or-
der to provide an enumeration, or if abstracted, a compact
description of the traces accepted by the DFA classifier.

Example 4.2 The regular expression can be transformed
into a more readable form such as:
“Without first doing ♀ or ♂, repeat the following zero or
more times: eventually do H2 or H3, then without doing A
or B, eventually do H1 or H2, followed optionally by other
events, excluding ♀ and ♂. Finally do K, followed by any-
thing.”

For others, it may be informative to extract path proper-
ties of a DFA as LTL formulae, perhaps over a subset of Σ
or with preference for particular syntactic structures (e.g.,
(Camacho and McIlraith 2019)).

Example 4.3 DFA classifierM |= �♦K, the LTL property
“always eventually do K ”.

These transformations and entailments utilize well stud-
ied techniques from formal language theory (e.g., Rozen-
berg and Salomaa 2012). Which delivery form is most ef-
fective is generally user- and/or task-specific and should be
evaluated in situ via a usability study.

4.1 Explanation
An important service in support of interpretability is expla-
nation. In the context of classification, given classifier M
and trace τ , we wish to query M, seeking explanation for
the classification of τ .

In many real-world applications, traces comprise extrane-
ous symbols that are of no interest and play no role in the
classifier (such as the agent scratching their nose en route to
coffee). It often makes sense to define an explanation vocab-
ulary, Σe ⊆ Σ, a set of distinguished symbols of interest for
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explaining classifications that are pertinent to the explana-
tion of traces such as τ , i.e. Σe ∩Στ 6= {}. Explanations for
a positive classification can be extracted from a DFA classi-
fier over an explanation vocabulary following the techniques
described above.

In cases where a classifier does not return a positive clas-
sification for a trace, a useful explanation can take the form
of a so-called counterfactual explanation (e.g., Miller 2019).

Let α and β be strings over Σ. The edit distance between
α and β, d(α, β), is equal to the minimum number of edit
operations required to transform α to β. We take the edit dis-
tance between two strings to be their Levenshtein distance
where the set of edit operations comprises insertion, dele-
tion, and substitution, and where each of these operations
has unit cost (Levenshtein 1966).

Definition 4.1 (Counterfactual Explanation) LetM be a
DFA classifier that accepts the regular language L defined
over Σ and let τ be some string over Σ. A counterfactual
explanation for τ is the sequence of edit operations trans-
forming τ to a string τ ′ = argminω∈L(d(τ, ω)).

Wagner (1974) proposed an algorithm that computes, for
some string τ and regular language L, a string τ ′ ∈ L with
minimal edit distance from τ . The algorithm has a time com-
plexity that is quadratic in the number of states of the DFA
that accepts the language L in question.

Example 4.4 Given the DFA depicted in Figure 1 and a
trace τ = (A, H2, H1, ♂), a possible counterfactual expla-
nation is the edit operation (informally specified) REPLACE
♂ WITH K which transforms (A, H2, H1, ♂) to (A, H2, H1,
K). This explanation can then be transformed into a nat-
ural language sentence: “The binary classifier would have
accepted the trace had K been observed instead of ♂”. A
simple approach that generates such natural language sen-
tences from counterfactual explanations can be found in the
Technical Appendix § B.1.

4.2 Classifier Verification and Modification
Explanation encourages human trust in a classification sys-
tem, but it can also expose rationale that prompts a human
(or automated system) to further question or to wish to mod-
ify the classifier. Temporal properties of the DFA classifier
M, such as “Neither ♀ nor ♂ occur before K” can be
straightforwardly specified in LTL and verified against M
using standard formal methods verification techniques (e.g.,
Vardi and Wolper 1986). In the case where the property is
false, a witness can be be returned.

Our learned classifiers are also amenable to the inclusion
of additional classification criteria, and the modification to
the DFA classifier can be realized via a standard product
computation.

Let L1 and L2 be regular languages over Σ. Their inter-
section is defined as L1 ∩ L2 = {x | x ∈ L1 and x ∈ L2}.
Let M1 and M2 be the DFAs that accept L1 and L2, re-
spectively. The product ofM1 andM2 isM1×M2 where
the language accepted by the DFA M1 × M2 is equal to
L1 ∩ L2 (i.e., L(M1 ×M2) = L1 ∩ L2).

Definition 4.2 (Classifier Modification) Given a DFA en-
coding some classification criterionMc and a DFA classi-
fierM, the modified classifierM′ is the product ofM and
Mc.

Classifier modification ensures the enforcement of crite-
rion Mc in M′. However, such post-training modification
could result in rejection of traces in the dataset that are
labelled as positive examples of the class. Such modifica-
tion can (and should) be verified against the dataset. Finally,
modification criteria can be expressed directly in a DFA, or
specified in a more natural form such as LTL.

5 Experimental Evaluation
In this section we describe the results of an evaluation of
our approach, Discrete Optimization for Interpretable Se-
quence Classification (DISC), on a suite of goal recog-
nition and behaviour classification domains. DISC is the
implementation of the MILP model and Bayesian infer-
ence method described in Section 3. We compare against
LSTM (Hochreiter and Schmidhuber 1997), a state-of-the-
art neural network architecture for sequence classification;
Hidden Markov Model (HMM), a probabilistic generative
model which has been extensively applied to sequence tasks
(Kupiec 1992; Sonnhammer et al. 1998); n-gram (Dunning
1994) for n = 1, 2, which perform inference under the sim-
plifying assumption that each observation only depends on
the last n − 1 observations; and a DFA-learning approach
(DFA-FT) that maximizes training accuracy (minimizing the
number of DFA states only as a secondary objective), repre-
sentative of existing work in learning DFAs.

DISC, DFA-FT, and HMM learn a separate model for
each label while LSTM and n-gram directly model a prob-
ability distribution over labels. Each classifier predicts the
label with highest probability and all datasets consist of at
least 7 labels. The LSTM optimized average accuracy over
all prefixes of an observation trace in order to encourage
early prediction.

Table 1 contains a summary of results for all datasets.
Additional results (including examples of DFA classifiers
learned from the data) and details of the experiments can
be found in the Technical Appendix. The code for DISC is
available online1.

5.1 Experimental Setup
Performance is measured as follows. Cumulative conver-
gence accuracy (CCA) at time t is defined as the percentage
of traces τ that are correctly classified given min(t, |τ |) ob-
servations. Percentage convergence accuracy (PCA) at X%
is defined as the percentage of traces τ that are correctly
classified given the first X% of observations from τ . All re-
sults are averaged over 30 runs, unless otherwise specified.

The datasets we used for evaluation were selected to be
representative of the diversity of this class, both with respect
to data properties such as noise, complexity of classifica-
tion patterns, and to be somewhat suggestive of the diver-
sity of the tasks for which this work is applicable. We con-

1https://github.com/andrewli77/DISC
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sidered three goal recognition domains: Crystal Island (Ha
et al. 2011; Min et al. 2016), a narrative-based game where
players solve a science mystery; ALFRED (Shridhar et al.
2020), a virtual-home environment where an agent can in-
teract with various household items and perform a myriad of
tasks; and MIT Activity Recognition (MIT-AR) (Tapia, In-
tille, and Larson 2004), comprised of noisy, real-world sen-
sor data with labelled activities in a home setting. Given a
trace the classifier attempts to predict the goal the agent is
pursuing. Crystal Island and MIT-AR are particularly chal-
lenging as subjects may pursue goals non-deterministically.

Experiments for behaviour classification were conducted
on a dataset comprising replays of different types of scripted
agents in the real-time strategy game StarCraft (Kantharaju,
Ontañón, and Geib 2019), and on two real-world malware
datasets comprising ‘actions’ taken by different malware
applications in response to various Android system events
(BootCompleted and BatteryLow) (Bernardi et al. 2019).
The behaviour classification task involves predicting the
type of StarCraft agent and malware family, respectively,
that generated a given behaviour trace.

5.2 Results
Detailed results for StarCraft, MIT-AR, Crystal Island, and
BatteryLow are shown in Figure 3 while a summary of re-
sults from all domains is provided in Table 1.

DISC generally outperformed n-gram, HMM, and DFA-
FT, achieving near-LSTM performance on most domains.
LSTM displayed an advantage over DISC on datasets with
long traces. n-gram models excelled in some low-data set-
tings (see MIT-AR) but perform poorly overall as they fail
to model long-term dependencies. Surprisingly, DFA-FT
was able to outperform all other methods on the malware
datasets, but tested poorly on other noisy datasets (e.g. MIT-
AR, Crystal Island) due to overfitting.

In realistic early classification scenarios, a single, irrevo-
cable classification must be made, therefore it is common
to report a prediction accompanied by the classifier’s confi-
dence at various times (Xing et al. 2008). If the confidence
values closely approximate the true predictive accuracy, this
allows an agent to appropriately trade-off between earliness
and accuracy. We conducted an experiment where a classi-
fier receives higher utility for making a correct prediction
with fewer observations and uses its confidences to choose
the time of prediction. We note that LSTM is the state of
the art and is regularly used when earliness is a factor (e.g.,
Ma, Sigal, and Sclaroff 2016; Liu et al. 2016). The results
(presented in the Technical Appendix § C.4) show that DISC
has strong performance on each domain, only comparable by
LSTM. This demonstrates that DISC produces robust confi-
dences in its predictions.

5.3 Discussion and Limitations
We experimentally demonstrated a number of merits of our
model: we achieve near-LSTM performance in most goal
recognition and behaviour classification domains, as well
as in an early classification task. We note that we claim no
advantage over LSTMs in sequence classification and early

prediction and it is not the objective of this work to demon-
strate superior classifier accuracy to the LSTM baseline.

One feature of our learned classifiers is that they can en-
code simple long-term dependencies, while n-gram classi-
fiers cannot; in the simplest case, a unigram model does not
consider the order of observations at all. DISC makes similar
Markov assumptions to HMM – that the information from
any prefix of a trace can be captured by a single state – how-
ever, DISC only considers discrete state transitions, does not
model an observation emission distribution, and regularizes
the size of the model. We believe these were important fac-
tors in handling noise in the data.

A common approach to DFA-learning is to maximize
training accuracy with the minimum number of DFA states.
DFA-FT, which is based on this approach, excelled on the
malware domains (suggesting that the DFA structure is a
strong inductive bias for some real-world tasks), however,
it performed poorly on many noisy datasets. The novel reg-
ularization techniques based on (non-self-loop) transitions
and absorbing states introduced by DISC were crucial to
learning robust DFAs which generalized to unseen data.
Qualitatively, the DFAs learned by DISC were orders of
magnitude smaller than those learned by DFA-FT (see Tech-
nical Appendix § C).

Finally, DISC assumes the traces for each label can be
recognized by a DFA (or equivalently, form a regular lan-
guage), which does not always hold true. In particular, DISC
has limited model capacity, struggling on tasks that require
large or unbounded memories, or involve counting occur-
rences. While this can be ameliorated by increasing the num-
ber of DFA states, such models may be less interpretable and
require more computation to train. DISC also requires an ap-
propriately chosen penalty on state transitions that depends
on the amount of noise in the data, however, the reward for
absorbing states did not require tuning in our experiments.
A direction for future work is to extend DISC to handle real-
valued or multi-dimensional data.

6 Related Work
We build on the large body of work concerned with learn-
ing automata from sets of traces (e.g., Gold 1967; An-
gluin 1987; Oncina and Garcia 1992; Heule and Verwer
2010; Ulyantsev, Zakirzyanov, and Shalyto 2015; Angluin,
Eisenstat, and Fisman 2015; Giantamidis and Tripakis 2016;
Smetsers, Fiterău-Broştean, and Vaandrager 2018). Previous
approaches to learning such automata have typically con-
structed the prefix tree from a set of traces and employed
heuristic methods or SAT solvers to minimize the resulting
automaton. Here we follow a similar approach, but instead
specify and realize a MILP model that is guaranteed to find
optimal solutions given enough time; optimizes for a differ-
ent objective function than those commonly used by previ-
ous work (see Section 3); does not assume noise-free traces
or prior knowledge of the problem (e.g., a set of DFA tem-
plates); and introduces new forms of regularization.

Some work in automata learning has also shown
(some) robustness to noisy data. For instance, Xue et al.
(2015) combine domain-specific knowledge with domain-
independent automata learning techniques and learn min-
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Percent Accuracy given full observation traces
Dataset N |τ | DISC DFA-FT LSTM HMM 1-gram 2-gram
Crystal Island 893 52.9 78 (±1.2) 46 (±1.0) 87 (±1.1) 57 (±1.2) 69 (±0.9) 57 (±1.1)
StarCraft 3872 14.8 43 (±0.4) 38 (±0.4) 44 (±0.4) 38 (±0.6) 29 (±0.4) 37 (±0.4)
ALFRED 2520 7.5 99 (±0.1) 94 (±0.3) 99 (±0.1) 97 (±0.7) 83 (±0.3) 94 (±0.2)
MIT-AR 283 9.3 57 (±1.9) 36 (±1.9) 56 (±1.9) 45 (±2.1) 66 (±2.0) 55 (±1.5)
BootCompleted 477 206.0 59 (±2.2) 69 (±1.5) 65 (±1.3) 54 (±2.4) 46 (±2.8) 55 (±1.6)
BatteryLow 283 216.2 60 (±1.4) 73 (±1.4) 70 (±1.4) 52 (±2.2) 35 (±1.3) 54 (±1.5)

Table 1: A summary of results from all domains (DISC is our approach). With respect to the full dataset, N is the total number
of traces, and |τ | is the average length of a trace. Reported are the percentages of traces correctly classified given the full
observation trace, with 90% confidence error in parentheses. Highest accuracy is bolded.
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Figure 3: Test accuracy of DISC and all baselines as a function of earliness (number of observations seen so far) on one synthetic
dataset (left) and three real-world datasets (three right). We report Cumulative Convergence Accuracy up to the maximum length
of a trace. Error bars correspond to a 90% confidence interval. Further results appear in the Technical Appendix § C.

imal DFAs that capture malware behaviour, with empiri-
cal results suggesting a degree of robustness to noisy data.
While we eschew domain knowledge in this work, our ap-
proach allows for domain knowledge to be incorporated dur-
ing the learning process. Ulyantsev, Zakirzyanov, and Sha-
lyto (2015) also work with noisy data, but their SAT-based
model assumes that at-most k training instances have wrong
labels, which is not a natural hyperparameter in machine
learning, and does not support regularization.

Our work directly learns DFAs from data. However, it
is also possible to follow a two-step approach. The idea is
to first train a recurrent neural network (RNN) to solve the
classification problem and then to learn a DFA that attempts
to mimic the behaviour of the RNN (e.g., Jacobsson 2005;
Wang et al. 2018; Weiss, Goldberg, and Yahav 2018; Koul,
Fern, and Greydanus 2019). To learn the DFA, the main ap-
proaches consist of clustering the set of potential hidden
states of the RNN into a finite set of DFA states (e.g., Ja-
cobsson 2005; Wang et al. 2018) or to use the L∗ algorithm
(Angluin 1987) by utilizing the RNN as a minimally ade-
quate teacher (Weiss, Goldberg, and Yahav 2018).

Our work shares some of its motivation with previous
work that has proposed to learn interpretable classifiers

which favour early prediction (e.g., Xing et al. 2011; Ghal-
wash, Radosavljevic, and Obradovic 2013; Wang et al. 2016;
Hsu, Liu, and Tseng 2019). Some work in this space ap-
pealed to discrete optimization, as we do. For instance,
Ghalwash, Radosavljevic, and Obradovic (2013) leverage
discrete optimization to extract salient features from time
series and use those for early classification. Chang, Bertsi-
mas, and Rudin (2012) propose to learn binary classifiers
that take the form of interpretable association rules; how-
ever, their approach does not consider sequential data. In
our work, we specify a discrete optimization problem that
yields highly structured DFA classifiers that support expla-
nation and modification.

Relatedly, Bernardi et al. (2019) leverage process min-
ing techniques and perform malware detection by learning
declarative models representing different families of mal-
ware. However, they only consider the binary classifica-
tion task and do not consider early prediction. Additionally,
there exists a body of work that learns LTL formulae ca-
pable of discriminating between sets of traces (e.g., Neider
and Gavran 2018; Camacho and McIlraith 2019; Kim et al.
2019). These formulae can in turn be used to perform clas-
sification tasks (Camacho and McIlraith 2019). However,
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these works learn formulae from full traces and do not con-
sider early prediction.

While our work was originally motivated by the goal
recognition task, we have developed a general learning
approach for sequence classification. Previous work in
goal and plan recognition has typically relied on rich do-
main knowledge (e.g., Kautz and Allen 1986; Ramı́rez and
Geffner 2011), thus limiting the applicability of this body
of work. To leverage the existence of large datasets and ma-
chine learning techniques, some approaches to goal recog-
nition eschew assumptions about domain knowledge and
instead propose to learn models from data and use these
models to predict an agent’s goal given a sequence of ob-
servations (e.g., Geib and Kantharaju 2018; Amado et al.
2018; Polyvyanyy et al. 2020). Such approaches either learn
models of the dynamics that govern the environment which
are then used in goal recognition, or directly learn classi-
fiers that are given a sequence of observations and predict
the goal. Our work partially shares its motivation with this
body of work and proposes to directly learn classifiers from
a given set of traces. Our learned classifiers offer a set of
interpretability services, are optimized for early prediction,
and demonstrate a capacity to generalize in noisy sequence
classification settings.

There is also a body of work which applied automated
planning tools to the malware detection task (e.g., Geib and
Goldman 2001; Sohrabi, Udrea, and Riabov 2013; Riabov
et al. 2015). In particular, Sohrabi, Udrea, and Riabov (2013)
emphasize the importance of the robustness of a malware de-
tection system to unreliable observations derived from net-
work traffic, and demonstrate the robustness of their sys-
tem to such observations. Riabov et al. (2015) show how
robustness to noisy data can be enhanced by leveraging ex-
pert knowledge. Our learned classifiers demonstrate robust-
ness to noisy sequence data in malware datasets and can be
modified by experts to incorporate domain knowledge. Ri-
abov et al. (2015) develop techniques which allow domain
experts with no technical expertise in planning to construct
models which reflect their knowledge of the domain. Such
techniques could inspire methods by which domain experts
can intuitively modify our learned DFA classifiers.

Finally, it is worth mentioning that DFA learning has re-
cently been used to learn high-level models of memories for
RL agents (e.g., Toro Icarte et al. 2019a,b; Xu et al. 2020a,b;
Furelos-Blanco et al. 2020a,b; Rens and Raskin 2020). As
such, our method might also provide interesting avenues for
future work in reinforcement learning.

7 Concluding Remarks
The classification of (noisy) symbolic time-series data repre-
sents a significant class of real-world problems that includes
malware detection, transaction auditing, fraud detection, and
a diversity of goal and behavior recognition tasks. The abil-
ity to interpret and troubleshoot these models is critical in
most real-world settings. In this paper we proposed a method
to address this class of problems by combining the learn-
ing of DFA sequence classifiers via MILP with Bayesian in-
ference. Our approach introduced novel automata-learning
techniques crucial to addressing regularization, efficiency,

and early classification. Critically, the resulting DFA classi-
fiers offer a set of interpretability services that include expla-
nation, counterfactual reasoning, verification of properties,
and human modification. Our implemented system, DISC,
achieves similar performance to LSTMs and superior per-
formance to HMMs and n-grams on a set of synthetic and
real-world datasets, with the important advantage of being
interpretable.
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Smetsers, R.; Fiterău-Broştean, P.; and Vaandrager, F. 2018. Model
learning as a satisfiability modulo theories problem. In Interna-
tional Conference on Language and Automata Theory and Appli-
cations, 182–194. Springer.

Sohrabi, S.; Udrea, O.; and Riabov, A. V. 2013. Hypothesis explo-
ration for malware detection using planning. In Proceedings of the
27th AAAI Conference on Artificial Intelligence (AAAI), 883–889.

Sonnhammer, E. L.; Von Heijne, G.; Krogh, A.; et al. 1998. A hid-
den Markov model for predicting transmembrane helices in protein
sequences. In Ismb, volume 6, 175–182.

Tapia, E. M.; Intille, S. S.; and Larson, K. 2004. Activity recogni-
tion in the home using simple and ubiquitous sensors. In Interna-
tional conference on pervasive computing, 158–175. Springer.

Toro Icarte, R.; Waldie, E.; Klassen, T. Q.; Valenzano, R.; Castro,
M. P.; and McIlraith, S. A. 2019a. Learning Reward Machines for
Partially Observable Reinforcement Learning. In Proceedings of
the 32nd Conference on Advances in Neural Information Process-
ing Systems (NeurIPS), 15497–15508.

Toro Icarte, R.; Waldie, E.; Klassen, T. Q.; Valenzano, R.; Castro,
M. P.; and McIlraith, S. A. 2019b. Searching for Markovian Sub-
problems to Address Partially Observable Reinforcement Learn-
ing. In Proceedings of the 4th Multi-disciplinary Conference on
Reinforcement Learning and Decision (RLDM), 22–26.

Ulyantsev, V.; Zakirzyanov, I.; and Shalyto, A. 2015. BFS-based
symmetry breaking predicates for DFA identification. In Interna-
tional Conference on Language and Automata Theory and Appli-
cations, 611–622. Springer.

Vardi, M. Y.; and Wolper, P. 1986. An automata-theoretic approach
to automatic program verification. In Proceedings of the First Sym-
posium on Logic in Computer Science, 322–331. IEEE Computer
Society.

Wagner, R. A. 1974. Order-n correction for regular languages.
Communications of the ACM 17(5): 265–268.

Wang, Q.; Zhang, K.; Ororbia II, A. G.; Xing, X.; Liu, X.; and
Giles, C. L. 2018. An empirical evaluation of rule extraction from
recurrent neural networks. Neural computation 30(9): 2568–2591.

Wang, W.; Chen, C.; Wang, W.; Rai, P.; and Carin, L. 2016.
Earliness-aware deep convolutional networks for early time series
classification. arXiv preprint arXiv:1611.04578 .

Weiss, G.; Goldberg, Y.; and Yahav, E. 2018. Extracting automata
from recurrent neural networks using queries and counterexamples.
In Proceedings of the 35th International Conference on Machine
Learning (ICML), 5247–5256.

Xing, Z.; Pei, J.; Dong, G.; and Yu, P. S. 2008. Mining sequence
classifiers for early prediction. In Proceedings of the 2008 SIAM
international conference on data mining, 644–655. SIAM.

Xing, Z.; Pei, J.; and Keogh, E. 2010. A brief survey on sequence
classification. ACM Sigkdd Explorations Newsletter 12(1): 40–48.

Xing, Z.; Pei, J.; Yu, P. S.; and Wang, K. 2011. Extracting inter-
pretable features for early classification on time series. In Proceed-
ings of the 2011 SIAM International Conference on Data Mining,
247–258. SIAM.

Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.; Topcu,
U.; and Wu, B. 2020a. Joint inference of reward machines and poli-
cies for reinforcement learning. In Proceedings of the 30th Inter-
national Conference on Automated Planning and Sched. (ICAPS),
volume 30, 590–598.

Xu, Z.; Wu, B.; Neider, D.; and Topcu, U. 2020b. Active Finite
Reward Automaton Inference and Reinforcement Learning Using
Queries and Counterexamples. arXiv preprint arXiv:2006.15714 .

Xue, Y.; Wang, J.; Liu, Y.; Xiao, H.; Sun, J.; and Chandramohan,
M. 2015. Detection and classification of malicious JavaScript via
attack behavior modelling. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, 48–59.

Zhou, C.; Sun, C.; Liu, Z.; and Lau, F. 2015. A C-LSTM neural
network for text classification. arXiv preprint arXiv:1511.08630 .

9656


