
LTL2Action: Generalizing LTL Instructions for Multi-Task RL
Pashootan Vaezipoor*†‡ Andrew C. Li*†‡ Rodrigo Toro Icarte†‡ Sheila McIlraith†‡

†Department of Computer Science, University of Toronto ‡Vector Institute
†{pashootan, andrewli, rntoro, sheila}@cs.toronto.edu

Abstract

We address the problem of teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments . Instructions are expressed in a well-known formal language – linear temporal logic (LTL) – and can specify a diversity of complex, temporally extended

behaviours, including conditionals and alternative realizations. Our proposed learning approach exploits the compositional syntax and the semantics of LTL, enabling our RL agent to learn task-conditioned policies that generalize to new instructions, not observed during training. To

reduce the overhead of learning LTL semantics, we introduce an environment-agnostic LTL pretraining scheme which improves sample-efficiency in downstream environments. Experiments on discrete and continuous domains target combinatorial task sets of up to ∼ 1039 unique tasks

and demonstrate the strength of our approach in learning to solve (unseen) tasks, given LTL instructions . a

Background

Multi-Task Reinforcement Learning
Goal: Train a single task-conditioned policy to generalize to a wide

array of tasks. Tasks are specified in the formal language linear

temporal logic (LTL).

Linear Temporal Logic (LTL)

Next

Unt i l

Event ual l y

Al ways

LTL is an expressive language with desirable properties for RL.

• Temporal patterns can be specified with modalities like

eventually, until, always together with event predicates (i.e.,

propositions p).

• Compositional syntax allows us to procedurally sample

diverse, meaningful tasks for training (over 1039 tasks, in our

experiments).

• Unambiguous semantics allow us to automatically

determine task completion, unlike natural language. We

don’t rely on manually labelled data.

Task LTL English

Single Goal ◊ get_coal "Get coal"

Ordered Goals ◊ (get_coal ∧
◊ use_furnace)

"Get coal then
use the furnace"

Unordered Goals ◊ get_coal ∧
◊ get_wood

"Get coal and wood,
in any order"

Disjunctive Goals ◊ get_coal ∨
◊ get_wood "Get coal or get wood"

Safety ◊ get_wood ∧
� ¬ on_lava

"Get wood while
avoiding lava"

Challenges
o Non-Markovian Reward: Some LTL tasks require memory

with respect to the state (see table above).

o Myopia: Standard techniques for decomposing tasks into

sequential subtasks are sub-optimal (see example below,

left).

o Generalization: Most work on LTL+RL does not generalize to

unseen tasks.

LTL2Action

Neural Encodings of LTL Formulas
We encode the LTL instructions with a neural network to enable

generalization to unseen tasks. We considered encoding the syn-

tax as a sequence of tokens (GRU, LSTM) or the abstract syntax

tree (GNN).

?Get coal or wood, then use the furnace.?
 eventually ((pickup_coal or pickup wood) and (eventually use_furnace))

?Use the furnace.?
 eventually use_furnace

Complete!
True

?Get coal or wood?
 eventually ((pickup_coal or pickup wood)

?Use the furnace?
eventually use_furnace

Complete!
True

Progression

Myopic

Env Modul e LTL Modul e

Agent

RL Modul e

A
c

t
i

o
n

LTL
I nst r uct i on

Event
Det ect orEnvi r onment

U

Ur j

p

k

R
e

w
a

r
d

ϕ(i): ¬r U (j ∧ (¬p Uk))

ϕ(i) in prefix form: (U , (¬, r), (∧, j , (U , (¬, p), k)))

G (i)ϕ :

MΦ
prog(σ,ϕ(i−1))

LTL Progression
LTL Progression (Bacchus & Kabanza, 2000) is a formal method for

simplifying instructions over time as parts of the task are solved

(example in bottom left Figure). We show the following guaran-

tees:

Theorem: For LTL tasks, there exists an optimal policy that is

Markovian when the instructions are updated via LTL progression.

Ø Standard Markov RL can be applied

Ø Non-myopic

Pretraining
As LTL syntax and semantics are environment-agnostic, we pro-

pose to pretrain encodings of LTL without interacting with any

physical environment.

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GNNpre
prog

GNNprog

Myopic

GRU

D
isco

u
n

ted
retu

rn

Frames (millions)
The results on ZoneEnv, a MuJoCo-based continuous control environment with
coloured zones as LTL propositions. Tasks involve reaching zones of certain
colours in the correct order (while avoiding zones of the incorrect colour).

Pretraining Task: Given an LTL formula ϕ, satisfy ϕ as quickly as

possible, choosing one proposition to be true per step.

Experiments

We conducted experiments on diverse, procedurally-generated

LTL tasks, and across Gridworld and MuJoCo environments.

Key Results
• Performance: LTL2Action outperforms other approaches

which do not use LTL progression or are myopic.

• Architecture: Compositional architectures (GNN) encode

LTL formulas better than sequence models (LSTM, GRU).

• Pretraining: Pretraining LTL encodings results in more rapid

convergence in novel downstream environments.

• Upward Generalization: Our approach robustly generalizes

to instructions up to 3× larger than those in training.

Upward Generalization

0.32

0.88
0.98 0.98

0.71

-0.03

Ours No-Progression Myopic

Larger Tasks

Train Tasks

To
ta

l R
ew

ar
d

