
A fast and simple algorithm for training neural
probabilistic language models

Andriy Mnih

Joint work with Yee Whye Teh

Gatsby Computational Neuroscience Unit
University College London

25 January 2013

1 / 22

Statistical language modelling

I Goal: Model the joint distribution of words in a sentence.

I Applications:

I speech recognition
I machine translation
I information retrieval

I Markov assumption:

I The distribution of the next word depends on only a fixed number of
words that immediately precede it.

I Though false, makes the task much more tractable without making
it trivial.

2 / 22

n-gram models

I Task: predict the next word wn from n − 1 preceding words
h = w1, ...,wn−1, called the context.

I n-gram models are conditional probability tables for P(wn|h):
I Estimated by counting the number of occurrences of each word

n-tuple and normalizing.
I Smoothing is essential for good performance.

I n-gram models are the most widely used statistical language models
due to their simplicity and good performance.

I Curse of dimensionality:

I The number of model parameters is exponential in the context size.
I Cannot take advantage of large contexts.

3 / 22

Neural probabilistic language modelling

I Neural probabilistic language models (NPLMs) use distributed
representations of words to deal with the curse of dimensionality.

I Neural language modelling:

I Words are represented with real-valued feature vectors learned
from data.

I A neural network maps a context (a sequence of word feature
vectors) to a distribution for the next word.

I Word feature vectors and neural net parameters are learned jointly.

I NPLMs generalize well because smooth functions map nearby inputs to
nearby outputs.

I Similar representations are learned for words with similar usage
patterns.

I Main drawback: very long training times.

4 / 22

t-SNE embedding of learned word representations

 ,

 of

 in

 for

 −

 on with
 by

 (

 at

 about

 after

 when if

 before

 only

 over

 just

 more_than against

 like

 did

 under

 made

 ?

 between

 through

 out

 including make

 get

 do

 until

 without

 left

 at_least

 near

 take

 around

 see

 got
 to_do

 outside

 nearly

 give

 keep

 across

 put

 took
 pay

 does

 off
 along

 making

 held

 such_as

 up_to
 despite

 within

 received

 gave

 behind

 hit

 leave

 include

 almost

 showed

 !

 came

 estimated seen

 working

 doing done

 was_in

 taking

 appeared

 following

 included

 taken

 come

 caused cause

 inside

 based_on

 worked below

 saw
 hold

 all_of

 paid

 bring
 brought

5 / 22

Defining the next-word distribution
I A NPLM quantifies the compatibility between a context h and a

candidate next word w using a scoring function sθ(w ,h).

I The distribution for the next word is defined in terms of scores:

Ph
θ (w) =

1
Zθ(h)

exp(sθ(w ,h)),

where Zθ(h) =
∑

w ′ exp(sθ(w ′,h)) is the normalizer for context h.

I Example: Log-bilinear model (LBL) performs linear prediction in the
space of word representations:

I r̂(h) is the predicted representation for the next word obtained by
linearly combining the representations of the context words:

r̂(h) =
n−1∑
i=1

Ci rwi .

I The scoring function is sθ(w ,h) = r̂(h)>rw .

6 / 22

Maximum-likelihood learning
I For a single context, the gradient of the log-likelihood is

∂

∂θ
log Ph

θ (w) =
∂

∂θ
sθ(w ,h)−

∂

∂θ
log Zθ(h)

=
∂

∂θ
sθ(w ,h)−

∑
w ′

Ph
θ (w

′)
∂

∂θ
sθ(w ′,h).

I Computing ∂
∂θ log Zθ(h) is expensive: the time complexity is linear in

the vocabulary size (typically tens of thousands of words).
I Importance sampling approximation (Bengio and Senécal, 2003):

I Sample words from a proposal distribution Qh(x) and reweight the
gradients:

∂

∂θ
log Zθ(h) ≈

k∑
j=1

v(xj)

V
∂

∂θ
sθ(xj ,h)

where v(x) = exp(sθ(x,h))
Qh(x) and V =

∑k
j=1 v(xj).

I Stability issues: need either a lot of samples or an adaptive
proposal distribution.

7 / 22

Noise-contrastive estimation

I NCE idea: Fit a density model by learning to discriminate between
samples from the data distribution and samples from a known noise
distribution (Gutmann and Hyvärinen, 2010).

I If noise samples are k times more frequent than data samples, the
posterior probability that a sample came from the data distribution is

P(D = 1|x) = Pd (x)
Pd (x) + kPn(x)

.

I To fit a model Pθ(x) to the data, use Pθ(x) in place of Pd (x) and
maximize

J(θ) =EPd [log P(D = 1|x , θ)] + kEPn [log P(D = 0|x , θ)]

=EPd

[
log

Pθ(x)
Pθ(x) + kPn(x)

]
+ kEPn

[
log

kPn(x)
Pθ(x) + kPn(x)

]
.

8 / 22

The advantages of NCE

I NCE allows working with unnormalized distributions Pu
θ (x):

I Set Pθ(x) = Pu
θ (x)/Z and learn Z (or log Z).

I The gradient of the objective is

∂

∂θ
J(θ) =EPd

[
kPn(x)

Pθ(x) + kPn(x)
∂

∂θ
log Pθ(x)

]
−

kEPn

[
Pθ(x)

Pθ(x) + kPn(x)
∂

∂θ
log Pθ(x)

]
.

I Much easier to estimate than the importance sampling gradient
because the weights on ∂

∂θ log Pθ(x) are always between 0 and 1.

I Can use far fewer noise samples as a result.

9 / 22

NCE properties

I The NCE gradient can be written as

∂

∂θ
J(θ) =

∑
x

kPn(x)
Pθ(x) + kPn(x)

(Pd (x)− Pθ(x))
∂

∂θ
log Pθ(x).

I This is a pointwise reweighting of the ML gradient.

I In fact, as k →∞, the NCE gradient converges to the ML gradient.

I If the noise distribution is non-zero everywhere and Pθ(x) is
unconstrained, Pθ(x) = Pd (x) is the only optimum.

I If the model class does not contain Pd (x), the location of the optimum
depends on Pn.

10 / 22

NCE for training neural language models

I A neural language model specifies a large collection of distributions.

I One distribution per context.
I These distributions share parameters.

I We train the model by optimizing the sum of per-context NCE objectives
weighted by the empirical context probabilities.

I If Ph
θ (w) is the probability of word w in context h under the model, the

NCE objective for context h is

Jh(θ) = EPh
d

[
log

Ph
θ (w)

Ph
θ (w) + kPn(w)

]
+ kEPn

[
log

kPn(w)

Ph
θ (w) + kPn(w)

]
.

I The overall objective is J(θ) =
∑
h

P(h)Jh(θ), where P(h) is the empirical

probability of context h.

11 / 22

The speedup due to using NCE

I The NCE parameter update is cd+v
cd+k times faster than the ML update.

I c is the context size
I d is the representation dimensionality
I v is the vocabulary size
I k is the number of noise samples

I Using diagonal context matrices increases the speedup to c+v
c+k .

12 / 22

Practicalities

I NCE learns a different normalizing parameter for each context present in
the training set.

I For large context sizes and datasets the number of such
parameters can get very large.

I Fortunately, learning works just as well if the normalizing
parameters are fixed to 1.

I When evaluating the model, the model distributions are normalized
explicitly.

I Noise distribution: a unigram model estimated from the training data.

I Use several noise samples per datapoint.
I Generate new noise samples before each parameter update.

13 / 22

Penn Treebank results

I Model: LBL model with 100D feature vectors and a 2-word context.

I Dataset: Penn Treebank – news stories from Wall Street Journal.

I Training set: 930K words
I Validation set: 74K words
I Test set: 82K words
I Vocabulary: 10K words

I Models are evaluated based on their test set perplexity.

I Perplexity is the geometric average of 1
P(w|h) .

I The perplexity of a uniform distribution over N values is N.

14 / 22

Results: varying the number of noise samples

TRAINING NUMBER OF TEST TRAINING
ALGORITHM SAMPLES PPL TIME (H)

ML 163.5 21
NCE 1 192.5 1.5
NCE 5 172.6 1.5
NCE 25 163.1 1.5
NCE 100 159.1 1.5

I NCE training is 14 times faster than ML training in this setup.

I The number of samples has little effect on the training time because the
cost of computing the predicted representation dominates the cost of the
NCE-specific computations.

15 / 22

Results: the effect of the noise distribution

NUMBER OF PPL USING PPL USING
SAMPLES UNIGRAM NOISE UNIFORM NOISE

1 192.5 291.0
5 172.6 233.7

25 163.1 195.1
100 159.1 173.2

I The empirical unigram distribution works much better than the uniform
distribution for generating noise samples.

I As the number of noise samples increases the choice of the noise
distribution becomes less important.

16 / 22

Application: MSR Sentence Completion Challenge

I Large-scale application: MSR Sentence Completion Challenge

I Task: given a sentence with a missing word, find the correct completion
from a list of candidate words.

I Test set: 1,040 sentences from five Sherlock Holmes novels
I Training data:

I 522 19th-century novels from Project Gutenberg (48M words)

I Five candidate completions per sentence.

I Random guessing gives 20% accuracy.

17 / 22

Sample questions

I The stage lost a fine _____, even as science lost an acute reasoner,
when he became a specialist in crime.

a) linguist
b) hunter
c) actor
d) estate
e) horseman

I During two years I have had three _____ and one small job, and that is
absolutely all that my profession has brought me.

a) cheers
b) jackets
c) crackers
d) fishes
e) consultations

18 / 22

Question generation process (MSR)

I Automatic candidate generation:

1. Pick a sentence with an infrequent target word (frequency < 10−4)
2. Sample 150 unique infrequent candidates for replacing the target

word from an LM with a context of size 2.
3. If the correct completion scores lower than any of the candidates

discard the sentence.
4. Compute the probability of the word after the candidate using the

LM and keep the 30 highest-scoring completions.

I Human judges pick the top 4 completions using the following guidelines:

1. Discard grammatically incorrect sentences.
2. The correct completion should be clearly better than the

alternatives.
3. Prefer alternatives that require “some thought” to answer correctly.
4. Prefer alternatives that “require understanding properties of entities

that are mentioned in the sentence”.

19 / 22

LBL for sentence completion

I We used LBL models with two extensions:

I Diagonal context matrices for better scalability w.r.t word
representation dimensionality.

I Separate representation tables for context words and the next word.

I Handling sentence boundaries:

I Use a special “out-of-sentence” token for words in context positions
outside of the sentence containing the word being predicted.

I Word representation dimensionality: 100, 200, or 300.

I Context size: 2-10.

I Training time (48M words, 80K vocabulary): 1-2 days on a single core.

I Estimated ML training time: 1-2 months.

20 / 22

Sentence completion results
METHOD CONTEXT LATENT TEST PERCENT

SIZE DIM PPL CORRECT

CHANCE 0 20.0
3-GRAM 2 130.8 36.0
4-GRAM 3 122.1 39.1
5-GRAM 4 121.5 38.7
6-GRAM 5 121.7 38.4

LSA SENTENCE 300 49
RNN SENTENCE ? ? 45
LBL 2 100 145.5 41.5
LBL 3 100 135.6 45.1
LBL 5 100 129.8 49.3
LBL 10 100 124.0 50.0
LBL 10 200 117.7 52.8
LBL 10 300 116.4 54.7
LBL 10×2 100 38.6 44.5

I LBL with a 10-word context and 300D word feature vectors sets a new
accuracy record for the dataset.

21 / 22

Conclusions

I Noise-contrastive estimation provides a fast and simple way of training
neural language models:

I Over an order of magnitude faster than maximum-likelihood
estimation.

I Very stable even when using one noise sample per datapoint.
I Models trained using NCE with 25 noise samples per datapoint

perform as well as the ML-trained ones.

I Large LBL models trained with NCE achieve state-of-the-art
performance on the MSR Sentence Completion Challenge dataset.

22 / 22

