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Overview

•We introduce a simple, efficient, and general method for training di-
rected latent variable models.
– Can handle both discrete and continuous latent variables.
– Easy to apply – requires no model-specific derivations.
•Key idea: Train an auxiliary neural network to perform inference in the

model of interest by optimizing the variational bound.
– Was considered before for Helmholtz machines and rejected as infeasi-

ble due to high variance of inference net gradient estimates.
•We make the approach practical using simple and general variance re-

duction techniques.
•Promising document modelling results using sigmoid belief networks.

Variational inference

•Given a directed latent variable model that naturally factorizes as

Pθ(x, h) = Pθ(x|h)Pθ(h),

we can lower-bound the contribution of x to the log-likelihood as

logPθ(x) ≥ EQ [logPθ(x, h)− logQφ(h|x)] = Lθ,φ(x),

where Qφ(h|x) is an arbitrary distribution.
•Variational learning involves alternating between maximizing the lower

bound Lθ,φ(x) w.r.t. the variational distribution/posterior Qφ(h|x) and model
parameters θ.
•Typically variational inference requires:

– Variational distributions Q with simple factored form and different param-
eters for each x.

– Simple models Pθ(x, h), yielding tractable expectations.
– Iterative optimization to compute Q for each x.

Neural variational inference and learning (NVIL)

•We propose an approach that avoids iterative inference, while allowing ex-
pressive, potentially multimodal, posteriors and highly expressive models.
•This is achieved by using a feed-forward model for Qφ(h|x), making the

dependence of the approximate posterior on the input x parametric.
– This allows us to sample from Qφ(h|x) very efficiently.
– We refer to Q as the inference network because it implements approxi-

mate inference for the model being trained.
•We train the model and the inference network jointly by updating their pa-

rameters to increase the variational lower bound Lθ,φ(x).
– We compute all the required expectations using samples from Q.

Gradients of the variational bound

•The gradients w.r.t. to the model and inference net parameters are:
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•Both gradients can be estimated using samples from the inference net.
•However, the most natural estimator of the inference net gradient is too

high-variance to be useful.

Reducing gradient variance

•Key observation: if h is sampled from Qφ(h|x),

(logPθ(x, h)− logQφ(h|x)− b)
∂

∂φ
logQφ(h|x),

is an unbiased estimator of ∂
∂φLθ,φ(x) for any b that does not depend on h.

•Since the variance of the estimator does depend on b, we can obtain esti-
mators with lower variance by choosing b carefully.
•Our strategy is to choose b so that the resulting learning signal
logPθ(x, h)− logQφ(h|x)− b is close to zero.
•Borrowing terminology from reinforcement learning, we call b a baseline.

Variance reduction techniques

1. Constant baseline b
•Make b a running estimate of the mean of logPθ(x, h)− logQφ(h|x).
•Centers the learning signal, making it approximately zero-mean.
•Enough to obtain reasonable models on MNIST.

2. Input-dependent baseline bψ(x)
•An MLP with a single real-valued output.
•Can be seen as capturing logPθ(x).
•Makes learning considerably faster and leads to better results.

3. Variance normalization
•Scale the learning signal to have unit variance.
•Can be seen as simple global learning rate adaptation.
•Makes learning faster and more robust.

4. Local learning signals
•Simpler, less noisy local learning signals can be derived by taking ad-

vantage of the Markov properties of the model and the inference net.
• Likely to be important for training deeper models.

Generative modelling of binarized MNIST

Effect of gradient variance reduction

Figure 1: Sigmoid belief network
with 1 hidden layer of 200 units.
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Figure 2: Sigmoid belief network
with 2 hidden layers of 200 units.
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NVIL vs. Wake-Sleep

•SBN is a sigmoid belief network.
• fDARN is an SBN with hidden au-

toregressive connections.
•Dim is the number of latent vari-

ables in each layer, starting with
the deepest one.
•NVIL and WS refer to NVIL and

wake-sleep training respectively.
•NLL is the negative log-likelihood

for the tractable models and an es-
timate of or a bound on it for the
intractable ones.

MODEL DIM TEST NLL
NVIL WS

SBN 200 113.1 120.8
SBN 500 112.8 121.4
SBN 200-200 99.8 107.7
SBN 200-200-200 96.7 102.2
FDARN 200 92.5 95.9
FDARN 500 90.7 97.2
FDARN 400 96.3
DARN 400 93.0
NADE 500 88.9
RBM (CD3) 500 105.5
RBM (CD25) 500 86.3
MOB 500 137.6

Document modelling results

•Task: model the joint distribution of word counts in bags of words describ-
ing documents.
•Models: SBN and fDARN models with one hidden layer

•Datasets:
– 20 Newsgroups

- 11K docs, 2K vocabulary
– Reuters RCV1

- 800K docs, 10K vocabulary
•Performance metric: perplexity

MODEL DIM 20 NEWS REUTERS
SBN 50 909 784
FDARN 50 917 724
FDARN 200 598
LDA 50 1091 1437
LDA 200 1058 1142
REPSOFTMAX 50 953 988
DOCNADE 50 896 742
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