A fast and simple algorithm for training neural probabilistic language models

Andriy Mnih & Yee Whye Teh
Gatsby Computational Neuroscience Unit
University College London

Overview
• In spite of their superior performance, neural probabilistic language models (NPLMs) are far less widely used than n-gram models due to their notoriously long training times.
• We introduce a simple training algorithm for NPLMs based on noise-contrastive estimation, with time complexity independent of the vocabulary size.
• Over an order of magnitude faster than maximum-likelihood estimation.
• The resulting models perform just as well.
• We demonstrate the algorithm’s scalability by training several large neural language models on the MSR Sentence Completion Challenge dataset, achieving state-of-the-art results.

Neural probabilistic language models
• Neural probabilistic language models use distributed representations of words to deal with the curse of dimensionality.
 – Words are represented with real-valued feature vectors learned from data.
 – A neural network maps contexts (sequences of word feature vectors) to next word distributions.
• NPLMs generalize well because smooth functions map nearby inputs to nearby outputs.
• Similar representations are learned for words with similar usage patterns.
• Main drawback: very long training times.

Statistical language modelling
• Goal: Model the joint distribution of words in a sentence.
• Applications: speech recognition, machine translation, information retrieval.
• Markov assumption:
 – The distribution of the next word depends only on k words that immediately precede it.
 – Though clearly false, the assumption makes the task much more tractable without making it trivial.

n-gram models
• Task: predict the next word w, from n − 1 preceding words h = w₀,...,wₙ₋₁ (called the context).
• n-gram models are conditional probability tables for P(wₙ|h).
 – Estimated by smoothing word n-tuple counts.
 – Most widely used statistical language models due to their simplicity and good performance.
• Cannot take advantage of similarity between words / contexts.
• Curse of dimensionality:
 – The number of model parameters is exponential in the context size.
 – Cannot take advantage of large context sizes.

Maximum-likelihood estimation
• The gradient of the log-likelihood is:
 \[\frac{\partial}{\partial \theta} \log P_h(\theta) = \frac{\partial}{\partial \theta} \log P_h(w|h) \approx \frac{\partial}{\partial \theta} \log Z_h(\theta) \]
 Computing \(\frac{1}{w} \log Z_h(\theta) \) is expensive – the time complexity is linear in the vocabulary size.
• Can approximate \(\frac{1}{w} \log Z_h(\theta) \) using importance sampling (Bengio and Senécal, 2003):
 – Sample words from a proposal distribution and reweight the gradients.
• Stability issues: need either a lot of samples or an adaptive proposal distribution.

Noise-contrastive estimation
• Idea: Fit a density model by learning to discriminate between samples from the data distribution and samples from a known noise distribution (Gutmann and Hyvärinen, 2010).
• If noise samples are k times more frequent than data samples, the posterior probability that a sample came from the data distribution is:
 \[P(\theta | D = 1 | w) = \frac{P_h(w)}{P_h(w) + kP_N(w)} \]
• To fit a model \(P_h(\theta) \) to the data, use \(P_N(\theta) \) in place of \(P_h(\theta) \) and maximize \(P(\theta) \):
 \[E_{w,h} \left[\log \frac{P_h(w)}{P_h(w) + kP_N(w)} + kE_{w} \left[\log \frac{kP_h(w)}{P_h(w) + kP_N(w)} \right] \right] \]
• NCE allows working with unnormalized distributions \(P_h(\theta) \).
 – Set \(P_N(\theta) = P_h(\theta)/Z_h \) and learn \(Z_h \).
 – \(\theta \) are the parameters of the unnormalized distribution and \(s \) is \(\{\theta, \log Z_h\} \).
• The gradient of the objective for context h is:
 \[\frac{\partial}{\partial \theta} P(\theta) = \frac{\partial}{\partial \theta} \log P_h(w|h) \approx \frac{\partial}{\partial \theta} \log Z_h(\theta) \]

Speedup over MLE
The NCE parameter update is \(\frac{\partial}{\partial \theta} J(\theta) \) times faster than the ML update.
• Here \(c \) is the context size, \(d \) is the feature vector dimensionality, \(\gamma \) is the vocabulary size, and \(k \) is the number of noise samples.

Penn Treebank results
Data: news stories from Wall Street Journal
• Training/validation/test set: 930K/74K/82K words
• Vocabulary: 10K words

Sentence completion results
Task: Given a sentence with a missing word find the correct completion from a list of candidate words.
• Training set: 522 19th-century novels (48M words)
• Test set: 1,040 sentences from five Sherlock Holmes novels
• Five candidate completions per sentence.

Conclusions
Noise-contrastive estimation provides a fast and simple way of training neural language models:
• Over an order of magnitude faster than maximum-likelihood estimation.
• Models trained using NCE with 25 noise samples per datapoint perform as well as the ML-trained ones.