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Sparse Coding on Natural Sound

Any N-dimensional signal can be represented by N orthogonal
basis functions.

Natural sound/image signals only occupy a small subset of the
N dimensional space.

Sparse coding (Olshausen and Field, 1996) learns an
overcomplete set of basis functions that are optimal in
representing natural image patches.

Under similar principle, basis functions are learnt from natural
auditory signals (Lewicki 2002).

The learned basis functions are similar to the receptive fields
found in cat auditory nerves.
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Motivation for a Subspace Model

Coefficients from neighboring basis functions are highly
dependant.

Sparse coding forces these coefficients to be independent
during sparsification.

A better model should capture these dependencies, describing
signal structure while facilitating these dependencies.
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The Subspace Model

The subspace signal model

y(t) =
N∑

n=1

M∑
m=1

sm
n Am

n (t) + η(t)
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Model Learning

The learning is carried out by maximize the log likelihood of
the model over the data

L =< log P(Y |A) >

The update rule for the basis function is

∆A ∝ ∂L

∂A
∝
〈〈

(Y − As)sT
〉

P(s|Y ,A)

〉
The update rule requires us to sample from the posterior. ““

If the distribution is sparse, the density of the posterior can be
approximated by its maximum

s∗ = argmax
s

log P(Y |A, s)P(s)

= argmin
s

||Y − As||22 + λC

(
M∑

m=1

(sm)2

)
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Inference via Gradient Descent

This optimization problem can be solved through gradient
ascent

∆sp = (Y − As)AT
p − λ

∂C (sp)

∂sp

= Y TA−
N∑

q 6=p

AT
q Aqsq − g(sp)

where g(sp) = sp + λ
∂C(sp)

∂sp

If we let up = g(sp) and let up follow the energy gradient
with respect to sp, we have

up(t) + τ u̇p = Y TA−
N∑

q 6=p

AT
q Aqsq(t)

sp(t + 1) = g−1(up(t))
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Subspace Thresholding Circuit

A circuit implementation of the non-linear differential equation

This circuit will be efficient if s is sparse, i.e. no need to
compute AT

q Aqsq if sq = 0.

A biological plausible implementation.
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Soft Thresholding Functions

Let C (sp) = ||sp||1, the thresholding function g−1 is

||sp|| = ||g−1(up)|| =
{

0 if ||up|| ≤ λ
||up|| − λ if ||up|| > λ

∠sp = ∠g−1(up) = ∠up
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Hard Thresholding Functions

C (sp) =

{
1
2(λ2 − (||sp|| − λ))2 if ||sp|| ≤ λ
1
2λ2 if ||sp|| > λ

the thresholding function g−1 is

||sp|| = ||g−1(up)|| =
{

0 if ||up|| ≤ λ
||up|| if ||up|| > λ

∠sp = ∠g−1(up) = ∠up
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Result - Amplitude Waveform

Signals are 128 sample. Basis contains 256, 2-d subspaces (i.e., 4x
overcomplete)
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Result - Spectrograms

512 sample windowed FFT. 10 time steps with 50% overlap.

The spectrogram is converted into log-frequency and log
amplitude.

The spectrogram is whitened.

PCA is performed on the vectors and kept 90% of the
variance.

Trained subspace on whitened PCA data

Broadband Onset

Low frequency burst

Bandwidth Change

Time Frequency Shift

Harmonic Stack

Formant
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Conclusion and Future Works

Conclusion

Learned an overcomplete subspace model of natural sound.

A new inference method was developed.

Learned subspaces show shift and phase invariance.

Some subspaces also show novel speech features such as
formant invariance.

Future Directions

Identify sounds/speech features that drive each subspace.

Learning subspaces for a convolution model.

Learning the appropriate dimension of the subspace for sound.
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