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Sparse Coding on Natural Sound

@ Any N-dimensional signal can be represented by N orthogonal
basis functions.

e Natural sound/image signals only occupy a small subset of the
N dimensional space.

@ Sparse coding (Olshausen and Field, 1996) learns an
overcomplete set of basis functions that are optimal in
representing natural image patches.

@ Under similar principle, basis functions are learnt from natural
auditory signals (Lewicki 2002).
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@ The learned basis functions are similar to the receptive fields
found in cat auditory nerves.
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Motivation for a Subspace Model

o Coefficients from neighboring basis functions are highly
dependant.

Dependancies between two neighbouring coefficients

A
~ A

@ Sparse coding forces these coefficients to be independent
during sparsification.

@ A better model should capture these dependencies, describing
signal structure while facilitating these dependencies.
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The Subspace Model

The subspace signal model
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Model Learning

@ The learning is carried out by maximize the log likelihood of
the model over the data

L=<log P(Y|A) >

@ The update rule for the basis function is

L ;
DA - o <<(Y — As)s >P(S|Y7A)>

@ The update rule requires us to sample from the posterior. "

o If the distribution is sparse, the density of the posterior can be
approximated by its maximum

s* = argmaxlog P(Y|A,s)P(s)
S

M
= argmin||Y — As||3 + A\C ( (sm)2>
S

m=1

Audio Coding



Inference via Gradient Descent

@ This optimization problem can be solved through gradient

ascent
9C(sp)

As, = (Y — As)A] — Ao
P

N
=YTA=Y AlAssq—g(sp)
q#p

where g(sp) =sp + /\%Si")

o If we let u, = g(sp) and let u, follow the energy gradient
with respect to s,, we have

N
up(t) +7ip = YTA= D AT Agsq(t)
a#p
sp(t+1) = g_l(up(t))
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Subspace Thresholding Circuit

@ A circuit implementation of the non-linear differential equation

@ This circuit will be efficient if s is sparse, i.e. no need to
compute A;—Aqsq if s =0.
@ A biological plausible implementation.
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Soft Thresholding Functions

1

o Let C(sp) = |[spl||1, the thresholding function g~* is

L1 Cost Function

llg™1 el

sl = Ilg(up)l| = {

0

if ||up|| < A

[lup|| = A if Jlup[| > A
Lsp=2Lg Yup) = Zu,
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Hard Thresholding Functions

°
1(y2 2
s (AT =(llspll = A))7 if [Isp|| < A
C(sp) = 2 P et
(sp) { i i s,]] > A
the thresholding function g~ is
_ 0 if [Jupl| <A
_ 1 _ p
Spl| = up)l| = .
lspll = [lg™ (up)]| { upl| if [Jupl| > A

Lsp=2g Hup) = Zu,
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Result - Amplitude Waveform

Signals are 128 sample. Basis contains 256, 2-d subspaces (i.e., 4x
overcomplete)
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Result - Spectrograms

@ 512 sample windowed FFT. 10 time steps with 50% overlap.

@ The spectrogram is converted into log-frequency and log
amplitude.

@ The spectrogram is whitened.

e PCA is performed on the vectors and kept 90% of the
variance.

@ Trained subspace on whitened PCA data
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Conclusion and Future Works

Conclusion
@ Learned an overcomplete subspace model of natural sound.
@ A new inference method was developed.
@ Learned subspaces show shift and phase invariance.

@ Some subspaces also show novel speech features such as
formant invariance.

Future Directions
e Identify sounds/speech features that drive each subspace.
@ Learning subspaces for a convolution model.

@ Learning the appropriate dimension of the subspace for sound.
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