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Nice Properties for an 
Unsupervised Learning Algorithm

• Hierarchical

• Greater abstraction at higher levels

• Discovery of independent/invariant aspects of 
input

• Local connectivity and learning

• Tractable learning

• Willingness to set aside structure/information 
once it has been successfully described



Brief (confusing) 
Overview

• Find a transformation of the data X0 into 
a space X1 such that the energy assigned 
to every point in X0 is a linear function of 
its representation in X1.

• Perform a change of variables, propagating 
both the data and the associated energy 
landscape forward into X1.

• Find a nonlinear transformation of the 
data X1 into a space X2, such that any 
desired modifications of the existing 
energy landscape in X1 can be written as 
a linear function of X2.

• Rinse.  Repeat.
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One Layer Case
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q (x0; θ) =
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Z (θ)
Z (θ) =

∫
x e−E(x0;θ)

x1,i = σi (φix0; θ)

Learn by maximizing the 
log-likelihood of model - 

details to follow

E (x0; θ) =
∑

i x1,i + ε||x0||2



One Layer Case
In the case where

this reduces to a product of student-t tests 
(Welling, Hinton, Osidero, 2003)

but what if we want a more flexible 
nonlinearity . . .?

σ (t;α) = α log
(
1 + t2

)

q (x0; θ) = e
−

P
i αi log (1+(φix)

2)
Z(θ) =

Q
i (1+(φix)2)−αi

Z(θ)



One Layer Case

• Choose a more flexible nonlinearity

(This choice is only mildly special.  Learning might work better 
if a menagerie of pointwise nonlinearities are instead 
provided.)

• The energy function now looks like the output of a 
one layer neural net.  (Reminiscent of probabilistic 
backprop by eg Neal, MacKay in early 90s . . . but their focus 
was on treatment of model parameters)

σ (t;α,β) = α sinh−1 (t + β)
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Adding Another Layer
• X1 is a good representation to build on

• The space used to construct the energy 
landscape is likely a sensible one to use for 
future manipulations of the energy landscape

• The nodes in X1 are struggling to be 
independent.  (An energy function linear in 
X1 means a model distribution which is 
factorial in exp(X1), which is a reasonable 
stand-in for independence in a feed-forward 
model.)

q (x0) ∝
∏

i

f (x1,i)



Adding Another Layer

• Propagate both the data and the energy 
landscape up the hierarchy
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Adding Another Layer
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Learn by maximizing the 
log-likelihood of model - 

details to follow
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Adding Another Layer

• Instead of being relearned from scratch, only 
perturbations to the energy landscape are 
learned by higher levels.  This means that 
higher levels don’t waste effort rehashing 
structure which has already been described.

• The error function (log likelihood) is also 
computed in the new more sensible data 
space



Final Form

E (x0; θ) =
∑

i

x1,i +
∑

i

x2,i +
∑

i

x3,i + ... + ε||x0||2

•The final energy assigned to an 
input is the sum of contributions 
from units at every level of 
abstraction
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Learning
• Stochastic gradient descent on score matching objective 

function (Hyvärinen, 2005, or ask me for paper draft with 
alternative interpretation):

• For SM learning, propagating the energy landscape up the 
hierarchy only involves accumulating the first spatial 
derivative of the energy function

• When model and data distributions agree, both score 
matching and maximum likelihood share a global minima.

• Score matching is equivalent to calculating the log learning 
gradient only in infinitesimal hyperspheres around the data 
points rather than over the full data space.

θ̂ = arg max
θ

〈log q (x0; θ)〉p(x0)

θ̂ = arg min
θ

〈
1
2
∇X ·∇XE (x0; θ)−∇2

XE (x0; θ)
〉

p(x0)



Additional Learning 
Tricks

• Stochastic gradient descent using a diagonal, 
partition free, approximation to the natural 
gradient

• Learning performed in whitened data space



Preliminary Results

12x12 receptive fields learned by first layer 
nodes after training on natural images

5 first layer nodes with (top) most 
positive and (bottom) most negative 

influence on 10 randomly chosen 
second layer nodes



Future Work
• Make hierarchy conditional on auxiliary 

information (eg, stacked RBMs learned in 
parallel)

• Allow energy landscape to propagate down as 
well as up hierarchy during learning

• Allow overcomplete higher levels (making 
incoherence assumption about manifold)

• Tapestry of Experts - unroll energy hierarchy 
over full image

• Temporal dynamics

• Intelligent guesses for initial energy landscape


