
SEMANTIC HASHING

Ruslan Salakhutdinov and Geoffrey Hinton
University of Toronto, Machine Learning Group

IRGM Workshop

July 2007

1



Existing Methods

• One of the most popular and widely used in practice algorithms
for document retrieval tasks is TF-IDF. However:
– It computes document similarity directly in the word-count space, which

can be slow for large vocabularies.
– It assumes that the counts of different words provide independent

evidence of similarity.
– It makes no use of semantic similarities between words.

• To overcome these drawbacks, models for capturing
low-dimensional, latent representations have been proposed and
successfully applied in the domain of information retrieval.

• One such simple and widely-used method is Latent Semantic
Analysis (LSA), which extracts low-dimensional semantic
structure using SVD to get a low-rank approximation of the
word-document co-occurrence matrix.

2



Drawbacks of Existing Methods

• LSA is a linear method so it can only capture pairwise
correlations between words. We need something more powerful.

• Numerous methods, in particular probabilistic versions of LSA
were introduced in the machine learning community.

• These models can be viewed as graphical models in which a
single layer of hidden topic variables have directed connections
to variables that represent word-counts.

• There are limitations on the types of structure that can be
represented efficiently by a single layer of hidden variables.

• Recently, Hinton et al. have discovered a way to perform fast,
greedy learning of deep, directed belief nets one layer at a time.

• We will use this idea to build a network with multiple hidden
layers and with millions of parameters and show that it can
discover latent representations that work much better.

3



Learning multiple layers

W

W

W

W

RBM500

1

RBM

2

500

500

500

32

RBM

RBM

3

4

30

500

• A single layer of features generally cannot
perfectly model the structure in the data.

• We will use a Restricted Boltzmann
Machine (RBM), which is a two-layer undirected
graphical model, as our building block.

• Perform greedy, layer-by-layer learning:
– Learn and Freeze W1

– Treat the learned RBM features, driven by
the training data as if they were data.

– Learn and Freeze W2.
– Greedily learn as many layers of features

as desired. .

• Each layer of features captures strong
high-order correlations between the activities
of units in the layer below.

4



RBM for count data

i

j

W

v

h

bias

• Hidden units remain binary and the visible
word counts are modeled by the Constrained
Poisson Model.

• The energy is defined as:
E(v,h) = −

∑

i bivi −
∑

j bjhj −
∑

i,j vihjwij

+
∑

i vi log Z
N

+
∑

i log Γ(vi + 1)

• Conditional distributions over hidden and visible units are:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i wijvi)

p(vi = n|h) = Poisson
(

exp (λi +
∑

j hjwij)
∑

k exp
(

λk +
∑

j hjwkj

)N

)

• where N is the total length of the document.

5



The Big Picture

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

2000
1

2

500

2000

1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

500
RBM

500

500
RBM

3

RBM

Recursive Pretraining Fine−tuning

2

1

3 4

5

6

Code Layer

32

32

T

T

T

6



Reuters Corpus: Learning 2-D code space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic 
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government 
 Borrowings

Disasters and
Accidents

Energy Markets

LSA 2−D Topic Space

• We use a 2000-500-250-125-2 autoencoder to convert test
documents into a two-dimensional code.

• The Reuters Corpus Volume II contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

• We used a simple “bag-of-words” representation. Each article is
represented as a vector containing the counts of the most
frequently used 2000 words in the training dataset.

7



Results for 10-D codes

• We use the cosine of the angle between two codes as a measure of
similarity.

• Precision-recall curves when a 10-D query document from the test
set is used to retrieve other test set documents, averaged over
402,207 possible queries.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100 

10

20

30

40

50

Recall (%) 

P
re

ci
si

o
n

 (
%

)

Autoencoder 10D
LSA 10D
LSA 50D
Autoencoder 10D
prior to fine−tuning

8



Semantic Hashing

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

2000
1

2

500

2000

1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

500
RBM

500

500
RBM

3

RBM

Recursive Pretraining Fine−tuning

2

1

3 4

5

6

Code Layer

32

32

T

T

T

• Learn to map documents into semantic 32-D binary code and use
these codes as memory addresses.

• We have the ultimate retrieval tool: Given a query document,
compute its 32-bit address and retrieve all of the documents
stored at the similar addresses with no search at all.

9



The Main Idea of Semantic Hashing

Semantically
Similar
Documents

Memory

Document 

f

10



Semantic Hashing
Reuters 2−D Embedding of 20−bit codes

Accounts/Earnings

Government 
Borrowing

European Community 
Monetary/Economic

Disasters and 
Accidents

Energy Markets

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100 
0

10

20

30

40

50

Recall (%) 

P
re

ci
si

o
n

 (
%

)

 

 

TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

• We used a simple C implementation on Reuters dataset (402,212
training and 402,212 test documents).

• For a given query, it takes about 0.5 milliseconds to create a
short-list of about 3,000 semantically similar documents.

• It then takes 10 milliseconds to retrieve the top few matches from
that short-list using TF-IDF, and it is more accurate than full
TF-IDF.

• Locality-Sensitive Hashing takes about 500 milliseconds, and is
less accurate. Our method is 50 times faster than the fastest
existing method and is more accurate.

11


