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Existing Methods

e One of the most popular and widely used in practice algorithms
for document retrieval tasks is TF-IDE. However:

— It computes document similarity directly in the word-count space, which
can be slow for large vocabularies.

— It assumes that the counts of different words provide independent
evidence of similarity.

— It makes no use of semantic similarities between words.

e To overcome these drawbacks, models for capturing
low-dimensional, latent representations have been proposed and
successfully applied in the domain of information retrieval.

e One such simple and widely-used method is Latent Semantic
Analysis (LSA), which extracts low-dimensional semantic
structure using SVD to get a low-rank approximation of the
word-document co-occurrence matrix.



Drawbacks of Existing Methods

e LSA is a linear method so it can only capture pairwise
correlations between words. We need something more powerful.

e Numerous methods, in particular probabilistic versions of LSA
were introduced in the machine learning community.

e These models can be viewed as graphical models in which a
single layer of hidden topic variables have directed connections
to variables that represent word-counts.

e There are limitations on the types of structure that can be
represented efficiently by a single layer of hidden variables.

¢ Recently, Hinton et al. have discovered a way to perform fast,
greedy learning of deep, directed belief nets one layer at a time.

e We will use this idea to build a network with multiple hidden
layers and with millions of parameters and show that it can
discover latent representations that work much better.
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Learning multiple layers

e A single layer of features generally cannot
perfectly model the structure in the data. [30] |

e We will use a Restricted Boltzmann ="~ ReM 3
Machine (RBM), which is a two—layer undirected

graphical model, as our building block. I_s—szSI
e Perform greedy, layer-by-layer learning: = oM
- Learn and Freeze W1 | ”””” 590 ********* | ——————————————
— Treat the learned RBM features, driven by g
RBM

the training data as if they were data. . —=—- Rem |

— Learn and Freeze W5. —_— |

— Greedily learn as many layers of features | o |
as desired. | .

e Hach layer of features captures strong
high-order correlations between the activities
of units in the layer below.



RBM for count data

e Hidden units remain binary and the visible “
word counts are modeled by the Constrained h\Q @
Poisson Model.

e The energy is defined as: W
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e Conditional distributions over hidden and visible units are:
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e where N is the total length of the document.




The Big Picture
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Reuters Corpus: Learning 2-D code space
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e We use a 2000-500-250-125-2 autoencoder to convert test
documents into a two-dimensional code.

e The Reuters Corpus Volume II contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

e We used a simple “bag-of-words” representation. Each article is
represented as a vector containing the counts of the most
frequently used 2000 words in the training dataset.
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Results for 10-D codes

e We use the cosine of the angle between two codes as a measure of
similarity.
e Precision-recall curves when a 10-D query document from the test

set is used to retrieve other test set documents, averaged over
402,207 possible queries.
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Semantic Hashing
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e Learn to map documents into semantic 32-D binary code and use
these codes as memory addresses.

e We have the ultimate retrieval tool: Given a query document,
compute its 32-bit address and retrieve all of the documents
stored at the similar addresses with no search at all.



The Main Idea of Semantic Hashing
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Semantic Hashing
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e We used a simple C implementation on Reuters dataset (402,212
training and 402,212 test documents).

e For a given query, it takes about 0.5 milliseconds to create a
short-list of about 3,000 semantically similar documents.

o [t then takes 10 milliseconds to retrieve the top few matches from

that short-list using TF-IDF, and it is more accurate than full
TF-IDFE.

e Locality-Sensitive Hashing takes about 500 milliseconds, and is

less accurate. Our method is 50 times faster than the fastest
existing method and is more accurate.
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