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The Unknown

As we know, 
There are known knowns. 

There are things we know we know. 
We also know 

There are known unknowns. 
That is to say 

We know there are some things 
We do not know. 

But there are also unknown unknowns, 
The ones we don't know 

We don't know.

Feb. 12, 2002, Department of Defense news briefing

From: The Poetry of Donald Rumsfeld
Hart Seeley, Slate Magazine





The evolution of eyes
Land & Fernald (1992)



Figure 1: The fly’s eye(s). At left a photograph taken by B Pijpker at the Rijksuniversiteit
Groningen, showing (even in this poor reproduction) the hexagonal lattice of lenses in the
compound eye. This is the blowfly Calliphora vicina. At right, a schematic of what a fly
might see, due to Gary Larson; for this and related matters see G Larson, The Complete Far
Side (Andrews McNeel Publishing, Kansas City, 2003). The schematic is incorrect because
each lens actually looks in a different direction, so that whole eye (like ours) only has one
image of the visual world. In our eye the “pixelation” of the image is enforced by the
much less regular lattice of receptors on the retina; in the fly pixelation occurs already
with the lenses.

balance one can demonstrate directly that motion across the visual field drives the gener-
ation of torque, and the sign is such as to stabilize flight against rigid body rotation of the
fly. Indeed one can close the feedback loop by measuring the torque which the fly pro-
duces and using this torque to (counter)rotate the visual stimulus, creating an imperfect
‘flight simulator’ for the fly in which the only cues to guide the flight are visual; under
natural conditions the fly’s mechanical sensors play a crucial role. Despite the imperfec-
tions of the flight simulator, the tethered fly will fixate small objects, thereby stabilizing
the appearance of straight flight. Similarly, Land and Collett (cf footnote 4) showed that
aspects of flight behavior under free flight conditions can be understood if flies generate
torques in response to motion across the visual field, and that this response is remarkably
fast, with a latency of just ∼ 30 msec. The combination of free flight and torsion balance
experiments strongly suggests that flies can estimate their angular velocity from visual
input alone, and then produce motor outputs based on this estimate.

When you look down on the head of a fly (Fig 1), you see—almost to the exclusion of any-
thing else—the large compound eyes. Each little hexagon that you see on the fly’s head
is a separate lens, and in large flies there are ∼ 5, 000 lenses in each eye, with approx-
imately 1 receptor cell behind each lens,7 and roughly 100 brain cells per lens devoted

7This is the sort of sloppy physics speak which annoys biologists. The precise statement is different in
different insects. For flies there are eight receptors behind each lens. Two provide sensitivity to polarization
and some color vision, but these are not used for motion sensing. The other six receptors look out through
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Fly H1 neuron - dynamic range of speed sensitivity
Lewen, Bialek & de Ruyter van Steveninck (2001)
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Figure 2. A comparison of responses to constant velocity in a typical laboratory experiment (closed
squares), and in an outdoor setting where the fly is rotating (open circles). Average firing rates
were computed over the last 0.5 s of a 1 s constant-velocity presentation.

The experiment of figure 2 compares data from the outdoor setup to data taken inside with
the fly observing a Tektronix 608 CRT. The stimulus displayed on this monitor consisted of 190
vertical lines, with intensities derived from a one-dimensional scan of the scene viewed by the
fly in the outdoor experiment. The moving scene was generated by a digital signal processor,
and written at a 500 Hz frame rate. As mentioned above, this gives rise to ghosting at high
image speeds when the pattern makes large jumps from frame to frame. The DSP produced
the coarse part of motion essentially by stepping through lines in a buffer memory. On top of
this, fine displacements were produced by moving the entire image by fractions of a linewidth
at each frame. The resulting motion was smooth and not limited to integer steps. The fly was
positioned so that the screen subtended a rectangular area of 67◦ horizontal by 55◦ vertical,
with the left eye facing the CRT and rightmost vertical edge of the CRT approximately in the
sagittal plane of the fly’s head.

2.3. Information theoretic analysis of neural firing patterns

We describe briefly a technique for quantifying information transmission by spike trains (de
Ruyter van Steveninck et al 1997, 2001, Strong et al 1998). We consider segments of the spike
train with length T divided into a number of bins of width !t , where !t ranges from one
millisecond up to !t = T . Each such bin may hold a number of spikes, but within a bin no
distinction is made on where the spikes appear. However, two windows of length T that have
different combinations of filled bins are counted as different firing patterns. Also, two windows
in which the same bins are filled but with different count values are distinguished. We refer
to such firing patterns as words, WT,!t . From an experiment in which we repeat a reasonably
long naturalistic stimulus a number of times, Nr (here Nr = 200 repetitions of a Tr = 5 s long
sequence), we get a large number of these words, WT,!t (t), with t the time since the start of
the experiment. Here we discretize t into 1 ms bins, giving us 5000 words/repetition period,
and 106 words in the entire experiment. From this set of words we set up word probability
distributions, from which we calculate total and noise entropies, and their difference, according
to Shannon’s definitions.

(i) The total entropy, Stot(T , !t). From the list of words WT,!t (t), for all t (0 ! t ! NrTr),
we directly get a distribution, P(WT,!t ) describing the probability of finding a word
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Jumping spider retina

horizontal section photoreceptor array



Jumping spider
eye movements



Jumping spiders do ‘object recognition’



Mantis shrimp



Mantis shrimp - photoreceptor spectral sensitivities



Human - photoreceptor spectral sensitivities
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Human retina - cone mosaic



Fixational eye movements



Human fixational eye movements
(Austin Roorda, UCB)
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HI horizontal cells connected via gap junctions



Bipolar cells



On vs. off cone
bipolar cells



Rod bipolar cell is
of on-type only

Net convergence of
rods to bipolar cells



AII amacrine 
cell links rod 
bipolar cells to 
ganglion cells



Ganglion cells





Midget ganglion cells receive
input from midget bipolar cells.

Ratio is 1:1 in fovea.



Smoothing and subsampling by retinal ganglion cells



Retinal ganglion cell spacing as a function of eccentricity

∆E ≈ .01(|E| + 1)
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Dendritic field size as a function of eccentricity



Letter size vs. eccentricity
(Anstis, 1974)









1730 W. M. Usrey Spike timing and visual processing

Figure 1. Photomicrographs of Nissl-stained sections of thalamus showing the LGN in nine different animals. (a) Rat (Rattus
norvegicus), (b) cat (Felis domestica), (c) !ying fox (Pteropus poliocephalus), (d) macaque monkey (Macaca mulatta), (e) human
(Homo sapiens), ( f ) chimpanzee (Pantroglodytes), (g) tree shrew (Tupai belangeri ), (h) galago (Galago senegalensis), (i ) cebus
monkey (Cebus capuchinus). The LGN is often referred to as a relay nucleus because LGN neurons receive direct input from
the retina and provide direct output to the primary visual cortex. The brain sections were kindly provided by E. G. Jones. The
images are not to scale.

does not depend on the overall strength of connection
between retinal and geniculate cells, as cell pairs that are
strongly connected (high probability of spike transfer) dis-
play the same degree of paired-spike enhancement as cell
pairs that are weakly connected.

The relationship between retinal interspike interval and
spike ef"cacy has been documented in both anaesthetized
cats (Mastronarde 1987; Usrey et al. 1998; Levine & Cle-
land 2001; Rowe & Fischer 2001) and, more recently,
alert cats (Weyand 2000). The dynamics of retinogenicul-
ate transmission can also be studied using brain slices that
include the LGN and cut retinal axons (Chen et al. 2002;
Lo et al. 2002). This in vitro approach has the advantage
that the mechanism(s) underlying the dynamic properties
of synaptic transmission can be studied. Using this in vitro
approach, Chen et al. (2002) have recently shown
that retinogeniculate synapses undergo paired-pulse
depression. This depression appears to rely, in large part,
on postsynaptic mechanisms including desensitization of
AMPA receptors and saturation of NMDA receptors.
The "nding that retinogeniculate synaptic transmission

Phil. Trans. R. Soc. Lond. B (2002)

undergoes synaptic depression in vitro, while spike transfer
between the retina and LGN is enhanced in vivo, is an
interesting issue and further experiments need to be per-
formed to correlate the in vivo and in vitro results.

There are a number of possible explanations for the dif-
ference between the in vivo and slice results. The "rst
possibility is based on the amount of circuitry available in
the two preparations. In the in vivo experiments, all of the
inputs and outputs of the LGN are intact and second
spikes might have an increased probability of driving gen-
iculate responses because "rst spikes trigger a polysynaptic
circuit that could potentially bring the geniculate cell
closer to threshold. Second, it has been suggested that
polysynaptic inhibition may be greater than monosynaptic
excitation at low levels of retinal activity and that the bal-
ance of inhibition and excitation shifts towards excitation
as retinal activity increases (Crunelli et al. 1988; Ziburkus
2001). Finally, LGN cells might simply behave differently
when stimulated with natural patterns of retinal activity
over long periods of time compared with short patterns of
electrical stimulation. In the Chen et al. (2002) study, reti-

Lateral geniculate nucleus (LGN)



Space-time tiling by parvo- and magno-cells



Receptive fields of monosynaptically connected cells in 
retina (a) and LGN (b) (from Marty Usrey)
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Figure 2. Receptive !elds (a,b), impulse responses (c), and
cross correlogram (d) of a pair of monosynaptically
connected neurons in the retina (a) and LGN (b). White-
noise receptive !eld maps (see Reid et al. (1997) for
method) show the receptive !elds of a retinal ganglion cell
(a) and LGN cell (b) recorded simultaneously. On regions
indicated in red, off in blue. The thin circle in both panels
corresponds to a !t of the centre of the retinal ganglion
cell’s receptive !eld (1.75 s, or standard deviations, from
the peak of the best !tting Gaussian). The impulse response
(c) shows the time-course of visual response for the retinal
ganglion cell (black line) and LGN cell (red line). The peak
of the visual response of the LGN cell is ca. 15.5 ms slower
than the peak response of the retinal ganglion cell. The cross
correlogram (d) shows the relative activity of the two cells.
Retinal spikes occur at time zero and the short-latency peak
to the right of zero indicates that many retinal spikes trigger
a spike in the LGN cell with a latency of ca. 2.5 ms. This
peak provides evidence that the retinal ganglion and LGN
cells are monosynaptically connected. (Modi!ed from Usrey
et al. (1999).)

nal axons were stimulated electrically every 2 min with
patterns that mimicked an in vivo response to a single "ash
of light. Given the power of in vitro techniques for address-
ing mechanistic questions about synaptic dynamics, it will
be interesting to see how LGN neurons respond to longer
trains of electrical stimuli that better approximate retinal
responses to dynamic visual stimuli.

Based on the dynamics of synaptic interactions at the
retinogeniculate synapse, one might expect tremendous
variability in geniculate responses to a repeated visual
stimulus. By contrast, Kara et al. (2000) have recently
shown in anaesthetized cats that geniculate responses are
much less variable than that of a Poisson process. These
results are similar to the remarkable degree of synaptic
reliability obtained in both LGN and hippocampal slices
using short segments of natural stimulus trains
(Dobrunz & Stevens 1999; Chen et al. 2002). Taken

Phil. Trans. R. Soc. Lond. B (2002)
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Figure 3. Plot showing the average ef!cacy of two retinal
spikes (Ret1 and Ret2) as they occur with an increasing
interspike interval (ISI) (n = 12 pairs of monosynaptically
connected retinal ganglion cells and LGN cells recorded in
vivo). Ef!cacy is equal to the percentage of retinal spikes
that elicit a geniculate spike. The second retinal spikes
(black) are much more effective than the !rst retinal spikes
(grey) at very short interspike intervals. As the interspike
interval increases, the ef!cacy of the second retinal spikes
decreases until ca. 30 ms, when the second spike ef!cacy is
approximately the same as the !rst spike ef!cacy. (Modi!ed
from Usrey et al. (1998).)

together, these results provide support for the idea that
the dynamics of retinogeniculate interactions are repeat-
able and consistent.

3. RETINAL DIVERGENCE AND LGN SYNCHRONY

The pathway from retina to LGN is both convergent
and divergent. Studies exploring convergent connections
have shown that while some LGN neurons receive all of
their retinal input from just one retinal ganglion cell, most
LGN neurons receive convergent input from a small num-
ber of ganglion cells with partially overlapping receptive
!elds (Levick et al. 1972; Mastronarde 1987; Usrey et al.
1999). How individual LGN neurons integrate these con-
vergent inputs is an open question and one that deserves
future attention. By contrast, the effects of divergent con-
nections have been more thoroughly explored (reviewed
in Usrey & Reid 1999). Some years ago, Cleland (1986)
proposed the idea that retinal ganglion cells with divergent
axons should induce synchronous responses among target
LGN neurons. The !rst evidence of this synchrony was
observed from multielectrode recordings of LGN neurons
in the cat with overlapping receptive !elds (Alonso et al.
1996). Con!rmation that this geniculate synchrony is the
result of common retinal input (!gure 4) was later demon-
strated from simultaneous recordings of individual retinal
ganglion cells along with multiple postsynaptic target neu-
rons in the LGN (Usrey et al. 1998). Synchrony resulting
from anatomical divergence in the LGN is both strong
and fast—up to 30% of the spikes from two LGN cells
that receive input from the same retinal ganglion cell can
occur within less than 1 ms of each other.

There is a strong relationship between synchronous
geniculate activity and retinal interspike interval. For a
pair of retinal spikes with interspike intervals of less than
30 ms, in vivo recordings show that second retinal spikes
are up to 12 times more likely than !rst spikes to drive



Color opponency in LGN
(Derrington, Krauskopf & Lennie, 1984)
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Primate visual cortex



V1 - topographic representation
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V1 receptive fields - ‘simple cells’

Jones & Palmer (1987)



V1 space-time receptive field
(Courtesy of Dario Ringach, UCLA)



The “standard model” of  V1
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Olshausen BA, Field DJ (2005)  How close are we to 
understanding V1?  Neural Computation, 17, 1665-1699.

Five problems with the current view of  V1

• Biased sampling (single unit recording)

• Biased stimuli (bars, spots, gratings) 

• Biased theories (data-driven vs. functional theories)

• Interdependence and context (effect of intra-
cortical inputs)

• Ecological deviance

See:



1 mm2 of cortex analyzes ca. 14 x 14 array of retinal
sample nodes and contains 100,000 neurons





be difficult to achieve ([71]; see also Figure 7 in [72]). The
precise lower limit on compartment size in the thin
dendrites of pyramidal cells remains to be determined,
perhaps through the use of voltage-sensitive dyes [73] and
highly focal uncaging techniques [74].

Getting at the inner neuron
What are the implications of these findings for single-
neuron computation? Could there be an underlying prin-
ciple that permits the full complexity of a dendritic tree to
be represented in highly simplified terms? The available
data suggest that the thin terminal branches of the apical
and basal trees of pyramidal cells provide a set of inde-
pendent non-linear ‘subunits’ that sum up their synaptic
inputs and then apply a sigmoidal thresholding non-
linearity to the output. In this scenario, how should the
outputs of multiple subunits be combined to influence
the cell’s overall response? In the few experimental
studies that have addressed the question of location
dependent synaptic summation, so far only involving

simple spatial integration scenarios, the data are most
consistent with a linear or sublinear summation rule for
signals that originate in different dendritic branches
[30,75–78]. Building on these findings, one can formulate
a working model in which the thin branches are the
integrative subunits of pyramidal neurons. According to
this model, each thin-branch subunit sums up its synaptic
drive and then applies a sigmoidal thresholding non-
linearity to the result, and the subunit outputs are
summed linearly within the main trunks and cell body
before output spike generation. This hypothesis is inter-
esting, in that it states that an individual pyramidal
neuron functions something like a conventional two-layer
abstract ‘neural network’ [12], in which the thin dendritic
branches themselves act like classical point neurons
(Figure 3b).

Poirazi and co-workers [79!!] used a detailed CA1 pyr-
amidal cell model [80!] to test the two-layer neural net-
work hypothesis. The authors used a complex set of

Figure 3
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Current Opinion in Neurobiology

Simplified models of pyramidal cells. (a) CA1 pyramidal cell morphology [123]. A grey triangular soma was added for clarity. (b) Two-layer sum-of-
sigmoids model as discussed by Poirazi et al. [79!!]. All thin branches are treated as independent subunits with sigmoidal thresholds whose outputs
are summed linearly in the main trunks and cell body. Small grey circles labelled ai represent subunit weights, which might vary as a function of
location or branch order. (c) A next generation single neuron model could include a multiplicative interaction between proximal and distal integrative
regions of the cell. Overall output of such a three-layer model might be expressed using the form y1 þ ay2.

Dendrites, bug or feature? Häusser and Mel 377

www.current-opinion.com Current Opinion in Neurobiology 2003, 13:372–383

Hausser & Mel (2003)



Cortex

LGN

Single unit recording is blind to neuronal interactions

...their (neurons') apparently erratic behavior was caused by our 
ignorance, not the neuron's incompetence.   --  H.B. Barlow (1972)
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There’s hope.



Silicon polytrodes






