Things we know, and *don't* know, about biological vision

Bruno A. Olshausen Helen Wills Neuroscience Institute School of Optometry and Redwood Center for Theoretical Neuroscience UC Berkeley

The Unknown

As we know, There are known knowns. There are things we know we know. We also know There are known unknowns. That is to say We know there are some things We do not know. But there are also unknown unknowns, The ones we don't know We don't know.

Feb. 12, 2002, Department of Defense news briefing

From: The Poetry of Donald Rumsfeld Hart Seeley, Slate Magazine

Fly HI neuron - dynamic range of speed sensitivity Lewen, Bialek & de Ruyter van Steveninck (2001)

Philanthus triangulum

Jumping spiders

Jumping spiders

Jumping spider retina

horizontal section

photoreceptor array

Jumping spiders do 'object recognition'

Text-fig. 12. Stimuli found by Drees to evoke courtship (a) and prey capture (b) in male jumping spiders (*Epiblemum scenicum*). The numbers beneath each figure in (a) are the percentage of trials on which courtship was evoked. After Drees (1952).

Mantis shrimp

Mantis shrimp - photoreceptor spectral sensitivities

Human - photoreceptor spectral sensitivities

Human retina - cone mosaic

Fixational eye movements

head/space

eye/head

eye/space

Human fixational eye movements (Austin Roorda, UCB)

HI horizontal cell

HI horizontal cells connected via gap junctions

HI horizontal cells labeled following injection of one HI cell (*) ×300 after Dacey, Lee, and Stafford, 1996

Bipolar cells

On vs. off cone bipolar cells

Rod bipolar cell is of on-type only

Net convergence of rods to bipolar cells

All amacrine cell links rod bipolar cells to ganglion cells

Ganglion cells

Midget ganglion cells receive input from midget bipolar cells.

Ratio is I:I in fovea.

Smoothing and subsampling by retinal ganglion cells

Retinal ganglion cell spacing as a function of eccentricity

 $\Delta E \approx .01(|E|+1)$

Dendritic field size as a function of eccentricity

Letter size vs. eccentricity (Anstis, 1974)

Fig. 3. All letters should be equally readable when centre of this chart is fixated, since each letter is ten times its threshold height.

Lateral geniculate nucleus (LGN)

Space-time tiling by parvo- and magno-cells

Receptive fields of monosynaptically connected cells in retina (a) and LGN (b) (from Marty Usrey)

Color opponency in LGN (Derrington, Krauskopf & Lennie, 1984)

Primate visual cortex

VI - topographic representation

Orientation columns

VI receptive fields - 'simple cells'

Jones & Palmer (1987)

VI space-time receptive field (Courtesy of Dario Ringach, UCLA)

The "standard model" of VI

Cat V1 - natural movies (J. Baker, S.C. Yen, C.M. Gray, MSU Bozeman)

Responses of VI neurons are not well predicted by RF models

Responses of neighboring cells are heterogeneous

Five problems with the current view of VI

- Biased sampling (single unit recording)
- Biased stimuli (bars, spots, gratings)
- Biased theories (data-driven vs. functional theories)
- Interdependence and context (effect of intracortical inputs)
- Ecological deviance
- See: Olshausen BA, Field DJ (2005) How close are we to understanding VI? Neural Computation, 17, 1665-1699.

1 mm² of cortex analyzes ca. 14 x 14 array of retinal sample nodes and contains 100,000 neurons

11-5556 World Cup "94" Rose Bowl Pasadena CA AERO PHOTO INC. 508-295-5551 (c) (E)

Hausser & Mel (2003)

Single unit recording is blind to neuronal interactions

...their (neurons') apparently erratic behavior was caused by our ignorance, not the neuron's incompetence. -- H.B. Barlow (1972)

What is the other 85% doing?

There's hope.

Silicon polytrodes

depth(µm)

ale and a set of the $(a_1,a_2) = (a_1,a_2) + (a_2,a_2) + (a_1,a_2) + (a_1$ $u_{1} = (1 + 1) + (1 + 1$ 400 مرور و و بار بار المراجع من المراجع الم hyperteristical and a second of the second o 600 ĸĸĸĸĸŶŶŧġŊĊĸĸŀĴĸĊĸĸĸſĸĸĸĸĸĸſŶĸſŎġĊĸĸĸĸĸſĸſĸĸĸĸĸſŶĸſŎĸĸĸĸſŶĸſŎĸĸĸĸſŶĸſĊĸĸĸĸĸſŶĸĊĸŶĸĸŶġſſĊĸĸĸĸĸſŶĸſŎĸ 800 والمحالي والمح and a start and a start and a start a s New Contraction and the الاسلانان بالايان المحاصبة والمحاصبة المحاصبة ا ĸĸĸĹĸĊĸĹŧĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĹĸĊĸĸĸŶĊĹĸĿĸĸĸŶĊĹŶĹŶŔĸĸĸĸĸŶĹŶĹŶŔĸĸĸĸĸĸĸĸĿĹŶŶĹŶŔĸŶĸĸĸĸĿĹĸĸŶĹĸĿĸĹĸĸŶĹĸĿĸŶĹĸŶĹŶĿ and and the second of the seco

200µV 5ms

n18, 1690um

n17, 1755um

....