
Kernel Learning Using Neural Networks

Renqiang Min
Machine Learning Group

University of Toronto
Adviser: Tony Bonner and Zhaolei Zhang

Aug 11, 2007
CIAR Summer School

Outline

Previous Kernel Learning Methods

Kernel Learning Using Neural Networks

Ongoing Work

Training part and test part of K

K =

[

TrainingPartN×N [TestPartT]N×T

TestPartT×N unused

]

T is the size of the test set and N is the size of the training set.
K is a (N + T) × (N + T) matrix.

Existing kernel learning methods

◮ diffusion kernels
◮ linear combinations of kernels based on Kernel Alignment

with SDP
◮ hyperkernels
◮ convex combinations of kernels via semi-infinite linear

programming

Kernel Alignment

◮ Kernel Alignment aligns a linear combination of kernels,
K1, K2, · · · , Km, to an optimal kernel computed using class
information of the training data.

◮ A column vector y contains the binary class membership
of all training data points, Kopt = yyT , where
y ∈ {−1,+1}N and N is the size of the training set.

◮ The objective function of Kernel Alignment is

ℓ =
Tr(Ktr K T

opt)
√

Tr(Ktr K T
tr)Tr(KoptK T

opt)
=

Tr(Ktr K T
opt)

N
√

Tr(Ktr K T
tr)

(1)

where K = θ1K1 + θ2K2 + · · · + θmKm, K � 0, and tr
denotes the training part of K.

Limitations of Existing Kernel Learning Methods

◮ Use blackbox packages to optimize
◮ Computationally Expensive
◮ Impractical for problems with fair-size datasets

Outline

Previous Kernel Learning Methods

Kernel Learning Using Neural Networks

Ongoing Work

Why Neural Nets

◮ We want to have a powerful non-linear feature mapping
◮ We want to make use of the rich structure information

existing in the dataset not just labels
◮ We want an efficient learning approach applicable to large

datasets

Learn the Desired Feature Directly

maxK ℓ =
Tr(Ktr K T

opt)

N
√

Tr(Ktr K T
tr)

subject to Tr(K) = 1, K � 0.

◮ Ktr = F T
tr Ftr , Ftr : the feature vectors learned from neural

networks for the training data.
◮ f , a column of Ftr , represents the feature vector learned for

one data point.
◮ Learn the weights − > Learn the mapping − > Learn the

kernel.

the constraint Tr (K) = 1

◮ To enforce the constraint, we make f = z
||z|| , where z is the

linear output vector of an encoder with one logistic hidden
layer.

◮ All the feature vectors lie on the surface of a unit sphere.
◮ Relaxing this constraint so that some points can lie inside

the sphere, we use a logistic unit r to represent the norm of
a feature vector

◮ Then f = r z
||z|| .

The Structure of the Encoder

z

input vector x

r

Learn the Weights in the Network

◮
∂ℓ

∂Ktr
=

KoptTr(Ktr K T
tr)

1
2 − Ktr Tr(Ktr K T

opt)Tr(Ktr K T
tr)−

1
2

Tr(Ktr K T
tr)

◮
∂ℓ

∂f (j)
=

∑

k
∂ℓ

∂Ktr ,kj
f (k) +

∑

k
∂ℓ

∂Ktr ,jk
f (k);

◮ Back Propagation using Stochastic Gradient Descent with
adpated learning rates invented by Geoff.

Combined with Unsupervised Learning

◮ The Class information is limited. Might overfit.
◮ The structure in the original data is rich: put a lot of

constraints on the weights.
◮ Maximizing the Kernel Alignment objective +

Reconstucting the original data vectors.
◮ Autoencoder!
◮ As in [Hinton and Salakhutdinov, 2006] and its following

work, make some componets in the code (feature) vector
ONLY participate in reconstruction.

The Structure of the autoencoder

reconstructed

x

z

input vector x

used for
reconstruction

only

z’

Old Results on Handwritten Digit Classification

◮ Dataset 1: 1100 8s (600 for training, 500 for testing) and
1100 9s (600 for training, 500 for testing)

◮ Dataset 2: 1100 4s (600 for training, 500 for testing) and
1100 6s (600 for training, 500 for testing)

◮ Old Results:

Kernels Gaussian NN Ball NN Auto Auto-
Kernel Surface Sphere RBM

dataset1(1000) 11 9 4 3 3
dataset2(1000) 13 12 7 4 3

The number of errors is out of 1000. Here, in the final 50
iterations of the training, we only minimize the kernel
alignment cost.

Extensions to Multi-Class Classification

◮ Define the optimal kernel as follows:

Kopt(i , j) =

{

+1 if i and j are in the same class or i = j
−1 otherwise;

(2)
◮ Still maximize the Kernel Alignment Objective.
◮ Use one-vs-the-rest SVM k times or use multi-class SVM.

k: the number of classes.

Outline

Previous Kernel Learning Methods

Kernel Learning Using Neural Networks

Ongoing Work

Work in progress

◮ Train the model on MNIST to do multi-class classification
(the binary classification task is too easy).

◮ Learn an Autoencoder with 4 hidden layers using stacked
RBM stead of only using RBM to learn the first hidden
layer.

◮ Relax the Tr(K) = 1 constraint by using logistic units for
the feature vector.

Work in progress

◮ deal with the dual of SVM directly without minimizing
kernel alignment cost

◮ coordinate optimization: iterate between optimizing the
dual parameters and the weights in the neural networks

Optimization in the dual

◮ minw maxα

∑

i αi −
∑

ij
1
2αiαj f T

i fj
s.t. 0 ≤ αi ≤ C, i , j = 1, . . . , n.

◮ Use log-barrier method to change the constrained
optimization to an unconstrained optimization

◮ annealing the log-barrier coefficient.
◮ coordinate optimization (current implementation is

stochastic gradient-based. Conjugate-Gradient and SMO
can be used here.).

The End

Thank you!

	Previous Kernel Learning Methods
	Kernel Learning Using Neural Networks
	Ongoing Work

