Modeling Images with Field of Gaussian Scale Mixtures

Siwei Lyu

Advisor: Eero P. Simoncelli

Center for Neural Science Courant Institute of Mathematical Sciences New York University

CIAR Summer School, University of Toronto, August 2007

 $\approx \frac{10^{10000}}{10000} \text{ 8-bit } 65 \times 65 \text{ images}$ $\approx 10^{1000} \text{ atoms in the universe}$

- compression (JPEG2000, 2002)
- denoising (Simoncelli & Adelson, 1996; Portilla et al., 2003; Roth & Black, 2005; Gehler & Welling, 2006)
- inpainting (Roth & Black, 2005)
- super-resolution (Freeman et al., 2000)
- texture synthesis(Zhu et al., 1998; Portilla & Simoncelli, 2000)
- segmentation (Figueiredo, 2005)
- forensics (Lyu & Farid, 2005; Lyu & Farid, 2006)

Multi-scale multi-orientation image decomposition (wavelet)

Gaussian scale mixtures (GSM)

Block GSM (Portilla et al., 2003)

overlapping blocks are independent GSM samples

Multi-scale tree of GSM (Wainwright et al., 2001)

 $\mathbf{x} \stackrel{d}{=} \mathbf{u} \otimes \sqrt{\mathbf{z}}$

			global	no artificial
X	u	Ζ	consistency	boundary
block GSM	Gaussian vector	scalar random variable	×	\checkmark
GSM tree	independent Gaussian	multi-scale tree	\checkmark	×
field of GSM	Gaussian MRF	positive MRF	\checkmark	\checkmark

Field of Gaussian scale mixture (FoGSM)

- modeling wavelet subband
- spatial homogeneity
- z: exponentiated Gauss MRF

FoGSM:

$\mathbf{x} \stackrel{d}{=} \mathbf{u} \otimes \sqrt{\mathbf{z}}$

- **u** : zero mean homogeneous Gauss MRF
- z : exponentiated homogeneous Gauss MRF
- **x**|**z** : *inhomogeneous* Gauss MRF
- $x \oslash \sqrt{z}$: homogeneous Gauss MRF
- marginal distribution is GSM
- generative model: efficient sampling

Fitting FoGSM model:

$$(\hat{\mathbf{z}}, \hat{\theta}_u, \hat{\theta}_z) = \underset{\mathbf{z}, \theta_u, \theta_z}{\operatorname{argmax}} \log p(\mathbf{z} | \mathbf{x}; \theta_u, \theta_z)$$

$$\cdots (\mathbf{z}, \theta_{u}, \theta_{z})$$

$$\mathbf{z} = \operatorname{argmax} \log p(\mathbf{z} | \mathbf{x}; \theta_{u}, \theta_{z})$$

$$\boldsymbol{\theta}_{u} = \operatorname{argmax} \log p(\mathbf{z} | \mathbf{x}; \theta_{u}, \theta_{z})$$

$$\boldsymbol{\theta}_{z} = \operatorname{argmax} \log p(\mathbf{z} | \mathbf{x}; \theta_{u}, \theta_{z})$$

$$\boldsymbol{\theta}_{z} = \operatorname{argmax} \log p(\mathbf{z} | \mathbf{x}; \theta_{u}, \theta_{z})$$

$$\cdots (\mathbf{z}, \theta_{u}, \theta_{z})$$

Marginal distributions

Pairwise joint distributions

Image denoising

In wavelet domain

- assume $\mathbf{x} \sim \text{FoGSM}$
- estimate **x** from **y**

- Maximum a posteriori:
$$\mathbf{\hat{x}} = \underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}}{\operatorname{argmax}} \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\mathbf{y}) d\mathbf{z}$$

- Bayes least squares: $\mathbf{\hat{x}} = E(\mathbf{x}|\mathbf{y}) = \int_{\mathbf{x},\mathbf{z}} \mathbf{x} p(\mathbf{x}, \mathbf{z}|\mathbf{y}) d\mathbf{x} d\mathbf{z}$
- Maximum joint mode: $(\mathbf{\hat{x}}, \mathbf{\hat{z}}) = \underset{\mathbf{x},\mathbf{z}}{\operatorname{argmax}} \log p(\mathbf{x}, \mathbf{z}|\mathbf{y})$

• combine with parameter estimation:

$$(\hat{\mathbf{x}}, \hat{\mathbf{z}}, \hat{\theta}_u, \hat{\theta}_z) = \underset{\mathbf{x}, \mathbf{z}, \theta_u, \theta_z}{\operatorname{argmax}} \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}; \theta_u, \theta_z)$$

Denoising + parameter estimation

$$\cdots (\mathbf{x}, \mathbf{z}, \theta_{u}, \theta_{z})$$

$$\mathbf{x} = \operatorname{argmax} \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}; \theta_{u}, \theta_{z})$$

$$\mathbf{z} = \operatorname{argmax} \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}; \theta_{u}, \theta_{z})$$

$$\theta_{u} = \operatorname{argmax} \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}; \theta_{u}, \theta_{z})$$

$$\theta_{z} = \operatorname{argmax} \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}; \theta_{u}, \theta_{z})$$

$$\theta_{z} = \operatorname{argmax} \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}; \theta_{u}, \theta_{z})$$

$$\cdots (\mathbf{x}, \mathbf{z}, \theta_{u}, \theta_{z})$$

- standard image set as used in (Portilla et al., 2003)
- steerable pyramid (Simoncelli & Freeman, 1995) of 8 orientations
- 5 level decomposition for image of 512×512
- 4 level decomposition for image of 256×256
- different noise levels
- initialization with block GSM denoised subband (Portilla et al., 2003)
- heuristic choice of model structure
- Running time: On average 4.5 hours to denoise a 512 × 512 image on PowerPC G5 (2.3 Ghz processor, 16 GB RAM) and unoptimized MATLAB (version R14) code.

σ/PSNR	Barbara	barco	boat	fingerprint	goldhill
1/48.13	48.75 (48.40)	49.88 (49.25)	48.59 (48.43)	48.67 (48.46)	48.33 (48.33)
5/34.15	38.65 (37.78)	38.98 (38.39)	37.39 (36.99)	37.28 (36.69)	37.16 (36.91)
10/28.13	35.01 (34.01)	35.05 (34.42)	34.12 (33.58)	33.28 (32.45)	33.78 (33.38)
15/24.61	32.85 (31.83)	32.92 (32.27)	32.31 (31.68)	31.07 (30.15)	31.99 (31.51)
25/20.17	30.10 (29.07)	30.44 (29.73)	30.03 (29.34)	28.45 (27.44)	29.91 (29.37)
30/18.59	29.12 (28.11)	29.61 (28.88)	29.22 (28.52)	27.56 (26.54)	29.22 (28.67)
50/14.15	26.40 (25.45)	27.36 (26.63)	27.01 (26.35)	25.11 (24.13)	27.38 (26.82)
75/10.63	24.29 (23.61)	25.64 (24.96)	25.33 (24.78)	23.16 (22.39)	25.93 (25.46)
100/8.13	23.01 (22.61)	24.44 (23.84)	24.20 (23.79)	21.78 (21.21)	24.88 (24.53)
σ /PSNR	Flintstones	house	Lena	peppers	baboon
1/48.13	49.79 (48.26)	48.57 (48.87)	47.92 (48.47)	49.03 (48.42)	50.08 (48.18)
5/34.15	36.43 (35.65)	38.98 (38.62)	38.66 (38.48)	37.91 (37.30)	36.61 (35.06)
10/28.13	32.47 (31.78)	35.63 (35.27)	35.94 (35.60)	34.38 (33.73)	31.69 (30.42)
15/24.61	30.63 (29.86)	33.89 (33.54)	34.28 (33.91)	32.34 (31.70)	29.19 (28.04)
25/20.17	28.29 (27.48)	31.64 (31.32)	32.11 (31.70)	29.78 (29.18)	26.34 (25.33)
30/18.59	27.42 (26.60)	30.82 (30.50)	31.32 (30.89)	28.89 (28.30)	25.41 (24.45)
50/14.15	24.82 (24.02)	28.51 (28.23)	29.12 (28.62)	26.43 (25.93)	23.03 (22.28)
75/10.63	22.72 (21.94)	26.69 (26.50)	27.37 (26.92)	24.53 (24.11)	21.47 (20.99)
100/8.13	21.24 (20.49)	25.33 (25.31)	26.12 (25.77)	23.17 (22.80)	20.58 (20.32)

PSNR: $20 \log_{10}(255/\sigma_e)$, where σ_e is the standard deviation of the error.

PSNR: FoGSM vs. (block GSM) (Portilla et al., 2003)

original image

block GSM (Portilla et al., 2003) (PSNR = 26.34dB)

noisy image (σ = 50) (PSNR = 14.15dB)

FoGSM (PSNR = 27.02dB)

block GSM (Portilla et al., 2003) (PSNR = 22.61dB)

FoGSM (PSNR = 23.01dB)

original image

noisy image (σ = 25) (PSNR = 20.17dB)

local GSM (Portilla et al., 2003) (PSNR = 29.73dB)

FoGSM (PSNR = 30.44dB)

original image

local GSM (Portilla et al., 2003) (PSNR = 22.61dB)

noisy image (σ = 100) (PSNR = 8.13dB)

FoGSM (PSNR = 23.01dB)

Conclusion

- photographic images have statistical regularities in wavelet domain
- local GSM description + global MRF structure can capture such regularities
- construction with homogeneous Gauss MRF makes computation feasible
- applied to denoising, FoGSM achieved substantial improvement in performance

Future work

- general Markov neighborhoods across scales and orientations
- other modelings for the z field
- modeling of other image characteristics, e.g., local phases and orientations
- combining with neuronal spiking model

References

- Figueiredo, M. (2005). Bayesian image segmentation using wavelet-based priors. *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*. San Diego.
- Freeman, W. T., Pasztor, E. C., & Carmichael, O. T. (2000). Learning low-level vision. *International Journal of Computer Vision*, 40, 25–47.
- Gehler, P., & Welling, M. (2006). Products of "edge-perts". In Y. Weiss, B. Schölkopf and J. Platt (Eds.), Advances in neural information processing systems (nips), 419–426. Cambridge, MA: MIT Press.

JPEG2000 (2002). JPEG2000: Image compression fundamentals, standards and practice. Kluwer Academic.

- Lyu, S., & Farid, H. (2005). How realistic is photorealistic? *IEEE Transactions on Signal Processing*, 53, 845–850.
- Lyu, S., & Farid, H. (2006). Steganalysis using higher-order image statistics. *IEEE Transactions on Information Forensics and Security*, *1*, 111–119.
- Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. *Int'l Journal of Computer Vision*, 40, 49–71.
- Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. *IEEE Transactions on Image Processing*, *12*, 1338–1351.
- Roth, S., & Black, M. (2005). Fields of experts: A framework for learning image priors. *IEEE Conference on Computer Vision and Patten Recognition (CVPR)* (pp. 860–867).
- Simoncelli, E. P., & Adelson, E. H. (1996). Noise removal via Bayesian wavelet coring. *Proc 3rd IEEE Int'l Conf* on *Image Proc* (pp. 379–382). Lausanne: IEEE Sig Proc Society.

- Simoncelli, E. P., & Freeman, W. T. (1995). The steerable pyramid: A flexible architecture for multi-scale derivative computation. *IEEE Int'l. Conf. on Image Proc.* (pp. 444–447).
- Wainwright, M. J., Simoncelli, E. P., & Willsky, A. S. (2001). Random cascades on wavelet trees and their use in modeling and analyzing natural imagery. *Applied and Computational Harmonic Analysis*, *11*, 89–123.
- Zhu, S. C., Wu, Y., & Mumford, D. (1998). Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. *Int'l. J. Comp. Vis.*, 27, 107–126.