Learning the human world with Deep Belief Networks

Jérôme Louradour

with Yoshua Bengio, Olivier Breuleux, Daniel Cernea, Aaron Courville, Olivier Delalleau, Dumitru Erhan, Pascal Lamblin, Marina Sokolava, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The 'baby Al' project General presentation

Towards the goal of artificial intelligence...

Make the machine learn with minimal "engineering intervention" (hardcoded rules, task-specific heuristics, ...)

How can we hope to perform well?

Feed well-established algorithms with cheap data (TV, video) "cheap" = unlabeled, simulated, ...

Why to focus on Deep Belief Networks?

- Exploit huge amounts of unlabeled data...
 - ... to generalize well with *few labeled* data (specific tasks)
- Gradual learning: first simple concepts, then + and + abstract
- Multi-modality (image, text, audio)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ─ つへで

Scientific goals

• Semi-supervised learning

Master the unsupervised learning.

• Gradual learning

As for children, the learning process must be more efficient with a good *curriculum*. (show simple examples first, then more complicated ones)

Multi-modality

"Multi-path" DBN + encourage RBMs to be mutually predictive.

• Dynamic aspect

Temporal RBM (James Bergstra).

• etc.

ヘロト 人間ト ヘヨト ヘヨト

Scientific goals

• Semi-supervised learning

Master the unsupervised learning.

• Gradual learning

As for children, the learning process must be more efficient with a good *curriculum*. (show simple examples first,

then more complicated ones)

• Multi-modality

"Multi-path" DBN + encourage RBMs to be mutually predictive.

• Dynamic aspect Temporal RBM (James Bergstra).

ヘロト ヘヨト ヘヨト

Scientific goals

• Semi-supervised learning

Master the unsupervised learning.

• Gradual learning

As for children, the learning process must be more efficient with a good *curriculum*. (show simple examples first.

then more complicated ones)

• Multi-modality

"Multi-path" DBN + encourage RBMs to be mutually predictive.

• Dynamic aspect

Temporal RBM (James Bergstra).

(人間) とうき くほう

etc.

The 'baby Al' project A first step

Торіс	Question given to the computer	Answer
Color	There is a small triangle. What color is it?	Green
Shape	What is the shape of the green object?	Triangle
Location	Is the blue square at the top or at the bottom?	At the top
Size	There is a triangle on the right.	
	ls it rather small or bigger?	Small
Size (relative)	Is the square smaller or bigger than the triangle?	Bigger

ヘロト 人間ト 人造ト 人造トー

A first step: preliminary results

	Chance	Baseline Error Rate (%)		
Торіс	Error Rate (%)	1 object	2 objects	3 objects
			(relative attributes)	
color	25	10	40	55
shape	66	50	55	60
size	50	0.5	25	30
location	50	5	35	40

- Results easily degrades when adding sources of variability.
- Image part: Shapes are very hard to capture (translation + rotation)
- Textual part: No problem to understand the topic. But when several objects, hard to guess the object of interest.

・ロト ・ 一下・ ・ ヨト ・ ヨト・

A first step: preliminary results

	Chance	Baseline Error Rate (%)		
Торіс	Error Rate (%)	1 object		3 objects
			(relative attributes)	
color	25	10	40	55
shape	66	50	55	60
size	50	0.5	25	30
location	50	5	35	40

- Results easily degrades when adding sources of variability.
- Image part: Shapes are very hard to capture (translation + rotation)
- Textual part: No problem to understand the topic. But when several objects, hard to guess the object of interest.

First attempts with DBN: not much better than shallow architecture... So we came back to basics

-

ヘロト 人間ト ヘヨト ヘヨト

On strategies to learn RBMs from unlabeled data

Generative learning of RBM

- Real criterion = emperical likelihood (on unlabeled data)
- Practical limitation: complexity O(2^{min(N_h,N_v)})
 → only for small models (little capacity)

イロト イポト イヨト イヨト

イロト イボト イヨト イヨト

Definition: Free Energy

$$\begin{aligned} \mathcal{F}\mathcal{E}(\mathbf{x}) &= -\log \sum_{\mathbf{h}} e^{-\mathcal{E}(\mathbf{x},\mathbf{h})} \\ &= -\log p_{\theta}(\mathbf{x}) + \log Z(\theta) \end{aligned} \Big) \ p_{\theta}(\mathbf{x}) = \frac{e^{-\mathcal{F}\mathcal{E}(\mathbf{x})}}{\sum_{\mathbf{v}} e^{-\mathcal{F}\mathcal{E}(\mathbf{v})}} \end{aligned}$$

э

イロト 不同 トイヨト イヨト

• Best gradient descent to maximize data likelihood:

$$- \boldsymbol{\nabla}_{\theta} \log p_{\theta}(\mathbf{x}_{i}) = \boldsymbol{\nabla}_{\theta} \mathcal{F} \mathcal{E}(\mathbf{x}_{i}) - \sum_{\mathbf{v}} p_{\theta}(\mathbf{v}) \boldsymbol{\nabla}_{\theta} \mathcal{F} \mathcal{E}(\mathbf{v})$$
(1)

э

イロト イヨト イヨト

• Best gradient descent to maximize data likelihood:

$$- \boldsymbol{\nabla}_{\theta} \log p_{\theta}(\mathbf{x}_{i}) = \boldsymbol{\nabla}_{\theta} \mathcal{F} \mathcal{E}(\mathbf{x}_{i}) - \sum_{\mathbf{v}} p_{\theta}(\mathbf{v}) \boldsymbol{\nabla}_{\theta} \mathcal{F} \mathcal{E}(\mathbf{v})$$
(1)

• Approximation: for each \mathbf{x}_i , sample an $\mathbf{\hat{x}}$ (*n* Gibbs steps)

$$\rho_{\theta}(\mathbf{\hat{x}}) \approx P(\mathbf{\hat{x}}|\mathbf{x}_i)$$
(\mathcal{H}_1)

• Given the analytic expression of $\boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{F} \mathcal{E}$, we update according to

(1)
$$\stackrel{(\mathcal{H}_1)}{=\!=\!=\!=} \boldsymbol{\nabla}_{\theta} \mathcal{F} \mathcal{E}(\mathbf{x}_i) - \boldsymbol{\nabla}_{\theta} \mathcal{F} \mathcal{E}(\mathbf{\hat{x}})$$

Given the analytic expression of $\boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{F} \mathcal{E}$, we update parameters with

$$oldsymbol{
abla}_{ heta}\mathcal{F}\mathcal{E}(oldsymbol{\mathsf{x}}_i) ~-~ oldsymbol{
abla}_{ heta}\mathcal{F}\mathcal{E}(oldsymbol{\hat{\mathsf{x}}})$$

 $\begin{array}{c} {\sf Tends to} \left\{ \begin{array}{c} \mathcal{FE}\searrow \ \ \, \text{on real data} \\ \mathcal{FE}\nearrow \ \ \, \text{on data sampled by the RBM} \end{array} \right. \end{array}$

Learning by contrastive divergence: The trap

Given the analytic expression of $\boldsymbol{\nabla}_{\theta}\mathcal{FE}$, we update parameters with

$$\nabla_{\theta} \left(\mathcal{F}\mathcal{E}(\mathbf{x}_{i}) \right) - \underline{\nabla}_{\theta} \left(\mathcal{F}\mathcal{E}(\mathbf{\hat{x}}) \right)^{*}$$

$$\nabla_{\theta} \left. \mathcal{F}\mathcal{E} \right|_{\mathbf{x}_{i}} - \nabla_{\theta} \mathcal{F}\mathcal{E} \right|_{\mathbf{\hat{x}}(\theta)}$$
... estimate of: $\mathrm{E} \left[\nabla_{\theta} \mathcal{F}\mathcal{E}(\mathbf{x}) - \sum_{\mathbf{\hat{x}}} p(\mathbf{\hat{x}}|\theta) \nabla_{\theta} \mathcal{F}\mathcal{E}(\mathbf{\hat{x}}) \right]$ (2)

æ

イロト 不得 トイヨト イヨト

Learning by contrastive divergence: The trap

Given the analytic expression of $\boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{F} \mathcal{E}$, we update parameters with

$$\nabla_{\theta} \left(\mathcal{F}\mathcal{E}(\mathbf{x}_{i}) \right) - \underline{\nabla}_{\theta} \left(\mathcal{F}\mathcal{E}(\mathbf{\hat{x}}) \right)$$

$$\nabla_{\theta} \left. \mathcal{F}\mathcal{E} \right|_{\mathbf{x}_{i}} - \nabla_{\theta} \left. \mathcal{F}\mathcal{E} \right|_{\mathbf{\hat{x}}(\theta)}$$

$$\dots \text{ estimate of: } \mathbf{E} \left[\nabla_{\theta} \mathcal{F}\mathcal{E}(\mathbf{x}) - \sum_{\mathbf{\hat{x}}} \rho(\mathbf{\hat{x}}|\theta) \nabla_{\theta} \mathcal{F}\mathcal{E}(\mathbf{\hat{x}}) \right]$$

$$(2)$$

9 $\mathcal{FE}(\mathbf{x}) - \mathcal{FE}(\mathbf{\hat{x}})$ is not the optimized function

イロト イポト イヨト イヨト

Learning by contrastive divergence: The trap

Given the analytic expression of $\boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{F} \mathcal{E}$, we update parameters with

$$\nabla_{\theta} \left(\mathcal{F}\mathcal{E}(\mathbf{x}_{i}) \right) - \underbrace{\nabla_{\theta} \left(\mathcal{F}\mathcal{E}(\mathbf{\hat{x}}) \right)}_{\mathbf{\nabla}_{\theta} \mathcal{F}\mathcal{E}|_{\mathbf{x}_{i}}} - \nabla_{\theta} \mathcal{F}\mathcal{E}|_{\mathbf{\hat{x}}(\theta)}$$
... estimate of: $\mathrm{E} \left[\nabla_{\theta} \mathcal{F}\mathcal{E}(\mathbf{x}) - \sum_{\mathbf{\hat{x}}} \rho(\mathbf{\hat{x}}|\theta) \nabla_{\theta} \mathcal{F}\mathcal{E}(\mathbf{\hat{x}}) \right]$ (2)

• $\mathcal{FE}(x) - \mathcal{FE}(\hat{x})$ is not the optimized function

On Nothing guarantees (2) is the gradient of a scalar function...

So how to choose the best hyper-parameters?

ロト (同) (日) (日)

How to choose the best hyper-parameters? (1/2)

Visualizing generated **samples**

- Give an insight of the learned representation
- Give an idea the weakness of the models.

Торіс	Chance Error Rate (%)	Error Rate (%)
color	25	7
shape	66	47
size	50	0
location	50	4

イロト イポト イヨト イヨト

How to choose the best hyper-parameters? (2/2)

Monitoring the reconstruction error

RBM as autoassociator (Mean-Field approximation)

• Rq: we can also train the reconstruction error by its stochastic gradient descent

・ロト ・ 同ト ・ ヨト ・ ヨト

Helping the RBM to work better

As for neural networks, redundancy in trained models.

Fully connected RBMs

Convolution RBMs

イロト 不同 トイヨト イヨト

Goal

While teaching RBM's units to do something good, make them do different things

э

Helping the RBM to work better

As for neural networks, redundancy in trained models.

Fully connected RBMs

Convolution RBMs

イロト 不同 トイヨト イヨト

Different heuristics

Example for binomial units, with $q_k = p(\mathbf{h}_k = 1 | \mathbf{x})$

$$\mathcal{C}(\mathbf{ heta}) = -\log \mathrm{E}\left[p_{\mathbf{ heta}}(\mathbf{x})
ight] + \lambda \mathcal{C}\left(\left\{ q_{k} q_{l}
ight\}_{k
eq l}
ight)$$

Future work

$\label{eq:Lot} \mbox{Lot's of things to try} \\ \mbox{before making DBN learn the human world with TV} \ldots$

Ξ.

ヘロト 人間 とくほと くほとう