Online Learning for Offroad Robots:

Using Spatial Label Propagation to Learn Long-Range Traversability

Raia Hadsell¹, Pierre Sermanet^{1,2}, Jan Ben², Ayse Naz Erkan¹, Jefferson Han¹, Beat Flepp², Urs Muller², Yann LeCun¹

(1) Courant Institute of Mathematical Sciences, New York University(2) Net-Scale Technologies, Morganville, NJ

Problem Definition

- Vision-based Navigation for Mobile Robots
 - Structured indoor environments
 - Unstructured indoor environments
 - Structured outdoor environments (road-following)
 - Unstructured outdoor environments
 - goal vs. non-goal driven

Problem Definition

- Vision-based Navigation for Mobile Robots
 - Unstructured outdoor environments
 - Primary tasks (for goal-driven systems):
 - Obstacle avoidance
 - Landmark detection
 - Path planning
 - Position estimation
 - Map building

Motivation: stereo shortcomings

- Vision-based navigation often done using stereo
 - Find **disparities** between 2 calibrated camera images
 - Ground/obstacle points identified using estimated ground plane

- Stereo maps are short-range, noisy, and prone to error (tall grass)
- Navigating in fog

Motivation: Beyond Stereo

- Beyond stereo: Long-range obstacle detection
 - Obstacles, cul-de-sacs, dead ends
 - promising paths
 - manmade structures
 - collapsible vs. non-collapsible vegetation

Robustness

- adaptation to new terrain
- memory of old terrain

Previous Work

Supervised Learning applied to Autonomous Navigation

- Learning steering angles directly from images:
 - ALVINN [Pomerlau, Robot Learning, 1993]; MANIAC [Jochem et al., IROS, 1995]
 - DAVE [LeCun et al., NIPS, 2005]
 - [Gaussier et al., IROS 1997], [Jones et al., IROS 1997]
- Learning obstacles from images:
 - NEURO-NAV [Meng and Kak, ICRA 1993]
 - [Manduchi et al., Autonomous Robot 2003]
 - [Huertas et al., Workshop of Applications of Computer Vision 2005]
 - Demo III [Hong et al., Aeroscience Conference 2002]
 - [Hong et al., ICRA 2002]
 - [Rasmussen, ICRA 2002]

Previous Work

- Self-Supervised Learning applied to Autonomous Navigation
 - Near-to-Far Learning: A reliable (but limited scope) module provides labels to train another module (with wider scope).
 - LADAR module ---> satellite image pixels (traversability)

[Sofman et al. Improving robot navigation through self-supervised online learning. RSS 2006.]

• Wheel data ---> LADAR features (terrain roughness)

[Stavens, Thrun. A self-supervised terrain roughness estimator for offroad autonomous driving. UAI 2006.]

Wheel data ---> LADAR features (load-bearing surface)

[Wellington, Stentz. Online adaptive rough-terrain navigation in vegetation. ICRA 2004.]

Vehicle location ---> color camera patches (road detection)

[Dahlkamp et al. Self-supervised monocular road detection in desert terrain. RSS, June 2006.]

Bumper hits, wheel current --> color camera features (traversability)

[Kim et al. Traversibility classification using unsupervised on-line visual learning for outdoor robot navigation. ICRA 2006]

LAGR Robotic Platform

- LAGR (Learning Applied to Ground Robots)
 - DARPA program 2005-2008
 - 8 competing research labs develop navigation software for single platform
 - Periodic testing in unfamiliar terrain
 - CMU/NREC designed platform and baseline software
 - Platform:
 - 4 color cameras (2 stereo pairs, 640x480)
 - GPS receiver
 - 2 front bumper switches
 - Onboard IMU (inertial measurement unit)
 - 4 onboard 1.2Ghz computers

LAGR Robotic Platform

LAGR Robotic Platform

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

- Paradigm: Near-to-Far Self-Supervised Learning
 - Inputs: large windows from image
 - Labels: Stereo module
 - Classifier: convolutional neural network (feature extraction) + online logistic regression

Control Loop Overview

- II. Labeling and Feature Extraction
- **III.** Label Propagation
- IV. Online Training and Classification

- 1) Image rectification and stereo algorithm -> image + point cloud
- 2) Ground plane estimation -> image + point cloud + plane equation
- 3) Convert to YUV, normalization -> YUV image + point cloud + plane eq.
- 4) Horizon leveling and distance/scale normalization -> image pyramid

- 1) Image rectification and stereo algorithm -> image + point cloud
- 2) Ground plane estimation -> image + point cloud + plane equation
- 3) Convert to YUV, normalization -> YUV image + point cloud + plane eq.
- 4) Horizon leveling and distance/scale normalization -> image pyramid

- 1) Image rectification and stereo algorithm -> image + point cloud
- 2) Ground plane estimation -> image + point cloud + plane equation
- 3) Convert to YUV, normalization -> YUV image + point cloud + plane
- 4) Horizon leveling and distance/scale normalization -> image pyramid

I. Pre-Processing

- 1) Image rectification and stereo algorithm -> image + point cloud
- 2) Ground plane estimation -> image + point cloud + plane equation
- 3) Convert to YUV, normalization -> YUV image + point cloud + plane eq.

4) Horizon leveling, distance/scale normalization -> image pyramid

Preprocessing

- Distance-normalized image pyramid
 - Better learning with large windows rather than simple patches-
 - context, transitions, feet
 - But, aspect varies severely, makes generalization from near to far impossible
 - Solution: normalize so that height of an object is independent of distance from camera.

29

Preprocessing

Distance-normalized image pyramid

(a). sub-image extracted from far range. (21.2 m from robot).

(b). sub-image extracted at close range. (2.2 m from robot).

(c). the pyramid, with rows (a) and (b) corresponding to sub-images at left.

- 20 bands from 1 to 35 meters
- Uniform height (16 pixels), variable width

Control Loop Overview

I. Pre-Processing

II. Labeling and Feature Extraction

- **III.** Label Propagation
- IV. Online Training and Classification

Control Loop: Training Set

II. Labeling and Feature Extraction

1)Histogram of stereo point cloud; heuristics to determine cost. -> training labels

2)Feature extraction using convolutional neural network -> pyramid of feature vectors

Feature Extraction

Convolutional Neural Network:

- Output of convolutional network: feature vector (120 components)
- Trained offline using 150 diverse logfiles (1.2 million samples)
- 48 7x6 filters (first layer), 5x3 filters (second layer), 80 outputs
- Low-level features are pooled
- Learns highly discriminative features
- Naturally shift and scale invariant

Feature Extraction

Convolutional Neural Network:

Control Loop Overview

- I. Pre-Processing
- II. Labeling and Feature Extraction
- **III. Label Propagation**
- IV. Online Training and Classification

Control Loop: Training Set

III. Label Propagation

1)Insert current samples (feature vectors) into QuadTree
2)Query QuadTree for concurrent samples
3)Compute probabilistic labels

-> "soft" labeled pyramid

View-Invariant Training Samples

- Label Propagation with spatially indexed Quad-tree
 - Time t: \mathbf{X}^{i} has coords (x,y) and label ?
 - *Time t*: Add \mathbf{X}^{i} to quad-tree at position (x,y)
 - Time t+n: Stereo gives label \mathbf{Y}^{i} to coords (x,y)
 - Time t+n: Extract \mathbf{X}^{i} and train with label \mathbf{Y}^{i}

Object is inserted without a label at time A

Query extracts object at time B and assigns a label 3^r

View-Invariant Training Samples

- Query at coords (x,y) yields samples X^i and (possibly) labels Y^i : { $(X^1, Y^1), (X^2, Y^2), ..., (X^m, Y^m)$ }
- Compute probabilistic, *soft* label across **Y**:

$$P_{ob} = \frac{|Y^{i} = ob|}{|Y^{i} = ob| + |Y^{i} = gr|} \qquad P_{gr} = \frac{|Y^{i} = gr|}{|Y^{i} = ob| + |Y^{i} = gr|}$$

• And propagate over all samples: $\{(X^1, Y^s), (X^2, Y^s), ..., (X^m, Y^s)\}$

View-Invariant Training Samples

- Query at coords (x,y) yields samples X^i and (possibly) labels Y^i : { $(X^1, Y^1), (X^2, Y^2), ..., (X^m, Y^m)$ }
- Compute probabilistic, *soft* label across **Y**:

$$P_{ob} = \frac{|Y^{i} = ob|}{|Y^{i} = ob| + |Y^{i} = gr|} \qquad P_{gr} = \frac{|Y^{i} = gr|}{|Y^{i} = ob| + |Y^{i} = gr|}$$

• And propagate over all samples: $\{(X^1, Y^s), (X^2, Y^s), ..., (X^m, Y^s)\}$

Control Loop Overview

- I. Pre-Processing
- **II.** Labeling and Feature Extraction
- **III.** Label Propagation
- **IV. Online Training and Classification**

Online Learning

• Classifier:

- trained online on each frame using gradient descent
- Output of convolutional network: feature vector D (120 components)
- Weights W are a logistic regression
- Regularization: decay to default weights, L2 regularization

$$\begin{array}{c} y = g(W'D) \\ & & \text{Loss:} \\ W'D \\ & & \text{Learning:} \\ \hline W \\ & & \text{Learning:} \\ \hline \partial U \\ & & \text{Learning:} \\ \hline \partial W \\ & & \text{Inference:} \\ y = g(W'D) \\ & & \text{Inference:} \\ y = g(W'D) \\ & & \text{where:} \\ g(z) = \frac{1}{1 + e^{-z}} \\ & & 41 \end{array}$$

Online Learning Comparison

- Red: uninitialized weights
- Black: default weights, no online learning
- Blue: default weights, online learning

a

b

С

LAGR long-range vision Results

Failure mode: saturated area is mis-classified

Failure mode: bad ground plane estimate

Failure mode: poor short term memory leads to erratic classification

In Summary

- Long Range Vision on LAGR platform:
 - Near-to-Far online learning
 - we use **context-rich image windows**, not color histograms
 - Distance-normalized image pyramid
 - Spatial label propagation
 - Convolutional network for feature extraction
 - Runs at 4-5 hz
 - Smooth, accurate maps **5 to 35 meters**

Caveats

- Range estimates can be very poor (ground plane estimation)
- Glare, close obstacles, tall grass/scrub (poor stereo labels)
- Desperate need for visual odometry to correct positioning errors