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Localization (the L in SLAM)

* Given a map,
determine the robot's
location from
observations.

* Example use: museum
tour guide robot

e Picture: RHINO, from
“Experiences with an Interactive
Museum Tour-Guide Robot”,
Wolfram Burgard et al
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Mapping (the M in SLAM)

* Given the robot's location, create a map from
observations.

 Example: Generating maps for localization,
because blueprints are inaccurate.

Hans Moravec 2002, http://www.ri.cmu.edu/~hpm/project.archive/robot.papers/2002/ARPA.MARS/Report.0202.html
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SLAM

* Simultaneous Localization and Mapping

* Given observations, simultaneously
generate a map and localize the robot
within it.

Picture from slam.ppt at
www.probabilistic-
robotics.org
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* SLAM:

- Classical Kalman Filter-based approach
- Energy-based SLAM

* Visual Odometry:

- Current methods

- Cheaper approaches used in conjunction with
SLAM
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Classical SLAM (EKF)

* Estimate hidden online state and its
covariance using an Extended Kalman

Filter.
- 1 1 n n
x—[rx,ry,rg,mx,my,...,mx, my]

* Observations = sensor input
- For example, pixel coordinates of landmarks.

- 71 1 1 n o _n
=12, 2,000 200 2y ]
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Classical EKF SLAM
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Classical EKF SLAM

From “slam.ppt” on www.probabilistic-
robotics.org
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Classical EKF SLAM

From “slam.ppt” on www.probabilistic-
robotics.org
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Classical EKF SLAM

From “slam.ppt” on www.probabilistic-
robotics.org
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Classical EKF SLAM

e There are more landmarks other sensor
Inputs than there are poses.

 EKF:
- O(n?) in storage.
- O(n?) in processing each time we move.
- Linearizes process and observation models.
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Graph SLAM

e An observation is a soft constraint
between one robot pose and one
landmark

- Observation covariance
(uncertainty)

=
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Graph SLAM

 Odometry gives a soft constraint between
successive poses.

Odometry covariance
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Graph SLAM

* If you retain past robot poses, you can
build up a graph.
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Graph SLAM

* If you retain past robot poses, you can
build up a graph.
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Graph SLAM

* If you retain past robot poses, you can
build up a graph.
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Graph SLAM

 EKF marginalized out past poses, and
built a fully connected graph of
landmarks.
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Graph SLAM

* Formulates SLAM as optimizing an energy
function of soft constraints.

* Full nonlinear optimization is slow, offline.
» Use stochastic updates instead.
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Energy function

* Energy function: a sum of independent
differentiable sub-energy modules.

* For example, the GPS energy:

C
E,(x,.8)=lg,~x ‘% g
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Energy function

* The odometry energy:

E (x,x,_,0)=[Ax,—o,ll
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Energy function

* The visual compassing energy:

Ev(Qt’Qt—l’ qbt):HAQt_qthCv
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Energy function

* The total energy:
E=) E+E +E [+ -]

teTl

* At each timestep,

- Select a set T of poses to optimize.

- Accumulate energy gradients into them and
any landmarks they affect.

- Gradient descent with diagonal Hessian.
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Results: visual
compassing

* Show movie
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Results: Overcoming

wheel slip

E] Lush Graphics E“E"Zl

iteration 220, solve time = 0.0059

-0
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* Landmarks

- Use Hessian uncertainty windows for efficient
landmark search.

* Visual odometry

- Use ground plane patches for translation
iInformation.

* Learning sensor uncertainty

- Hold poses constant, optimize w.r.t. sensor
covariance parameters.
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