Energy-Based Visual SLAM for Outdoor Robotics

Matthew Grimes

New York University

LAGR (Learning Applied to Ground Robotics)

- 9 teams, 9 flash drives, 1 robot
- Navigate through a novel course in natural terrain.
- Three time trials, with memory retained between trials.
- Goal: beat baseline system's time by a factor of 3.

My part

Localization (the L in SLAM)

- Given a map, determine the robot's location from observations.
- Example use: museum tour guide robot
- Picture: RHINO, from "Experiences with an Interactive Museum Tour-Guide Robot", Wolfram Burgard et al

Mapping (the M in SLAM)

- Given the robot's location, create a map from observations.
- Example: Generating maps for localization, because blueprints are inaccurate.

SLAM

- Simultaneous Localization and Mapping
- Given observations, simultaneously generate a map and localize the robot within it.

Picture from slam.ppt at www.probabilistic-robotics.org

Outline

SLAM:

- Classical Kalman Filter-based approach
- Energy-based SLAM
- Visual Odometry:
 - Current methods
 - Cheaper approaches used in conjunction with SLAM

Classical SLAM (EKF)

 Estimate hidden online state and its covariance using an Extended Kalman Filter.

$$\vec{x} = [r_x, r_y, r_\theta, m_x^1, m_y^1, ..., m_x^n, m_y^n]$$

- Observations = sensor input
 - For example, pixel coordinates of landmarks.

$$\vec{z} = [z_x^1, z_y^1, \dots, z_x^n, z_y^n]$$

From "slam.ppt" on www.probabilistic-robotics.org

From "slam.ppt" on www.probabilistic-robotics.org

From "slam.ppt" on www.probabilistic-robotics.org

There are more landmarks other sensor inputs than there are poses.

• EKF:

- O(n²) in storage.
- O(n²) in processing each time we move.
- Linearizes process and observation models.

 An observation is a soft constraint between one robot pose and one landmark

 Odometry gives a soft constraint between successive poses.

 If you retain past robot poses, you can build up a graph.

 If you retain past robot poses, you can build up a graph.

 If you retain past robot poses, you can build up a graph.

 EKF marginalized out past poses, and built a fully connected graph of landmarks.

- Formulates SLAM as optimizing an energy function of soft constraints.
- Full nonlinear optimization is slow, offline.
- Use stochastic updates instead.

- Energy function: a sum of independent differentiable sub-energy modules.
- For example, the GPS energy:

$$E_g(x_t, g_t) = ||g_t - x_t||_{C_g}$$

The odometry energy:

$$E_g(x_t, x_{t-1}, o_t) = ||\Delta x_t - o_t||_{C_o}$$

The visual compassing energy:

$$E_{v}(\theta_{t}, \theta_{t-1}, \phi_{t}) = ||\Delta \theta_{t} - \phi_{t}||_{C_{v}}$$

The total energy:

$$E = \sum_{t \in T} E_g + E_o + E_v \quad [+ \quad \cdots]$$

- At each timestep,
 - Select a set T of poses to optimize.
 - Accumulate energy gradients into them and any landmarks they affect.
 - Gradient descent with diagonal Hessian.

Results: visual compassing

Show movie

Results: Overcoming wheel slip

Future work

- Landmarks
 - Use Hessian uncertainty windows for efficient landmark search.
- Visual odometry
 - Use ground plane patches for translation information.
- Learning sensor uncertainty
 - Hold poses constant, optimize w.r.t. sensor covariance parameters.