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What are the mechanisms of learning in the brain?

Most theories assume we learn by adjusting our synaptic weights.

But there 1s an alternative: the brain could store new information in
reverberating loops of activity.

[ will show that loops provide a viable mechanism for learning — one
which has advantages over synaptic learning, and which can handle
challenging tasks.



The basic idea



A neuron can learn by adjusting its synaptic weights

This neuron N fires at rate y = w - z, and 1ts desired firing rate 1s y*.
We can drive y — y* with the learning rule

W =nez.



It could learn the same task with a reverberating loop
in the form of an integrator
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Again, we want to drive some signal y — y*. We can do this without
synaptic change, by making y the time-integral of e,

y =ne.



Weightless learning 1s fast

Neural firing rates can be adjusted quickly, on a millisecond timescale.

Synaptic adjustments are likely slower, and even if they are not,

training 1 neural signal means adjusting many synapses, which will
slow down convergence.



Weightless learning needs fewer neurons

Inputs

Many theories confine learning to 1 layer of synapses, so they won't
need error backpropagation. But then the network’s inputs must be
sent through a large array of preprocessor neurons, slowing learning.

Weightless learning avoids this preprocessing by steering y directly.



On the other hand, weightless learning 1s
less permanent

It learns on the fly — 1t doesn't accumulate knowledge in synapses, but
updates neural firing rates based only on their current values and those
of the input signals.

In light of these strengths and weaknesses, can weightless learning
handle interesting tasks?



Sensorimotor learning



Sensorimotor systems use sensory data to guide
motor action

U I
y —%Cmntrmller]—w| Plant » L

A controller receives input y and sends a command u to its controlled
object, or plant (e.g. eye, limb).

It tries to minimize some performance index, called the /loss, L, e.g. in
reaching, L might be the distance from hand to target.



Sensorimotor learning 1s hard

There 1s no sensory signal that can tell the controller what 1t should do;
i.e. there 1s no supervisor to guide its learning.

The brain can monitor L, but that doesn’t tell it how to adjust u.



How can the brain learn to improve u?
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To improve u, the brain needs to deduce the relation between L and u,
i.e. itneeds to know the partial derivative 0L/0u, or L,.

In some theories, a plant model deduces L,and reports 1t to a controller,
but the process 1s complex.



A flexible control system has to do 2 jobs

Find L,: There has to be a process, usually called a plant model, that
computes the dependence of L on u.

Create u: The controller has to generate a sequence of commands that
will minimize L.



Weightless learning does both jobs by linking
2 integrators 1n series
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The plant 1s the controlled object, u 1s the command the brain sends to
the plant, L 1s the loss, dots mark time derivatives, and ¢ means an
estimate; E 1s model error.

m

z = (u, y) where y includes any other variables, besides u, that affect L
(e.g. for the VOR, y includes head velocity and eye position) and L_1s
dL/dz.



How does this network compute L,?
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Start by guessing L _. Use the estimate to generate a command u, and at
the same time multiply <L,> by 7 to yield an estimate of L. Compare the
estimate «L» with the true L, and use the difference, E, , to improve <L..

i.e. drive (L » down the gradient of £ *

dL,/dt=-n,E,A OE /OL)>=nE,k .



How does this network compute u?
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Essentially, it makes u = —,<L,> (where n, > 0) so u is driven to the
value that minimizes L.



Simulations



Weightless learning can stabilize the eyeball

100 - - - —Head velocity
— Eye velocity

(o)
o

Velocity (°/s)
o

5 10
Time (s)

A weightless controller quickly learns to counterrotate the eye when
the head turns.

At 5 s the plant changes — the eye muscles are transposed — but the
circuit regains control.



Weightless learning can control a planar 2-joint arm



Implications



Weightlessness explains some puzzling properties
of learning

It provides a mechanism for very fast learning, which 1s harder to
explain based on synaptic change.

It explains why motor learning is initially unstable and needs to be
consolidated.

If sensory 1inputs change quickly, weightless learning can’t keep up.
This could explain why we move slowly when learning and slow down
when we start to make errors.



Predictions

Sensorimotor systems should contain cells that store information in
sustained firing, and integrators with time constants > a few seconds.

Some learning should be possible even when all synaptic change 1s
blocked, and some new learning should be erasable by electrically
disrupting neural activity.

Learning should be impaired by altered sensory feedback which accu-
rately represents L but not L, and by forced-haste tasks where subjects
receive no feedback unless they move quickly.



Weightless and synaptic learning can cooperate
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A weight-based plant model could compute the signals needed to drive
weightless learning 1in a controller.

There are other ways the 2 types of learning might interact, e.g. fast,

weightless learning might later be consolidated 1n more stable syn-
aptic change.



Conclusion



Weightless learning can complement synaptic
mechanisms, and likely do some things faster
and with fewer cells.
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An experimental test for weightless learning:
forced haste

When sensory inputs change quickly, weightless learning can't keep
up. So if we depend on weightless mechanisms for short-term motor
learning, then that learning should be severely impaired when we are
forced to move quickly.

To test this prediction, I will have subjects learn to track a fast-moving
point, or learn to move a cursor to a stationary target under conditions
where they get no feedback about their performance unless they attain
the target quickly.



An experimental test for weightless models:
recovery from plant reversals

In a sensorimotor task, if the plant model learns weightlessly, 1t should

learn fast enough that, when any component of 0L/0u changes sign, the
controller begins to improve immediately.

But 1f the model 1s slower-learning, there should be an 1nitial phase
where the controller can't improve because the model's estimate of

OL/Ou has the wrong sign.

We will have subjects learn to track a moving point using a joystick-
driven cursor, and then we will change the cursor's dynamics to reverse

OL/0Ou , and chart the recovery.



How does the network compute u?

We want an adjustment Au that makes AL =—L. We assume L = Ye'e,
where e 1s a linear function of z=(u, y).

Then we have —L = AL = —Y2Ae'Ae = Yse'Ae = Yre'e Az = VL Az, or
—2L=LAz=LAu+LAy.
SowewantAu : L Au=-2L—L Ay. The smallest such Au is
QL+ LAYLJLL,).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

