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Stochastic Gradient Descent

Cost to optimize: Ez [C (θ, z)] with θ the parameters and z a
training point.

Stochastic gradient:

θt+1 ← θt − εt
∂C (θt , zt)

∂θ

Batch gradient:

θk+1 ← θk − εk

n∑
t=1

∂C (θk , zt)

∂θ

Conjugate gradient: ”similar” to batch except the descent
direction is not the gradient itself, and the step εk is
optimized by line search.
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Stochastic vs. Batch

Batch is good because:

Gradient is less noisy (averaged over a large number of
samples)
Can use optimized matrix operations to efficiently compute
output and gradient over whole dataset

Stochastic is good because:

For large or infinite datasets, batch and conjugate gradient are
impractical.
More parameters updates ⇒ faster convergence
Noisy updates can actually help escape local minima
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Mini-batch stochastic gradient

”Trade-off” between batch and stochastic:

θk+1 ← θk − εk

sk+b∑
t=sk

∂C (θt , zt)

∂θ

Typical size of mini-batches: on the order of 10’s or 100’s.

Olivier Delalleau and Yoshua Bengio Parallel Stochastic Gradient Descent



Parallelization

Note: we are using a 16-CPU computer 6= 100’s computers on a
cluster.

Use existing parallel implementations of BLAS to speed-up
matrix-matrix multiplications: low speed-up unless using very
large mini-batches (⇒ equivalent to batch)

Split data into c chunks (each of the c CPUs sees one chunk
of the data), and perform mini-batch stochastic gradient
descent with parameters store in shared memory:

if all CPUs are updating parameters simultaneously: poor
performance (time wasted waiting for memory write locks)

proposed solution: at any time, only one CPU is allowed to
update parameters. The index of the next CPU to update is
stored in shared memory, and incremented after each update.

Proposed method gives good speed-up in terms of raw
”samples/s” speed (e.g.: x13 with 16 CPUs).
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Forking

Forking a program creates multiple copies of the program. Memory
is duplicated, except for shared memory.
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The Big Picture
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Virtual Speed-Up

The speed at which training examples are processed increases
(about) linearly with the number of CPUs.
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True Speed-Up

In practice, the frequency of updates is decreased ⇒ lower speed
of convergence.
Suggested experimental setting:

Identify target training error e from simple experiments

For each number of CPUs c , measure the amount of time
needed to reach error e

Note that hyper-parameters (learning rate and mini-batch size in
particular) need to be re-optimized for each value of c .
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Experiment

Letter recognition dataset from UCI machine learning
repository

15000 training samples, 16-dimensional input, 26 classes

Target NLL: 0.11

Constant network architecture (300 hidden neurons)

Find optimal fixed learning rate and mini-batch size
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Joke
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Discussion, Conclusion, Future Work and *Clap Clap*

My code is likely buggy!

Funny things can happen in parallel code

Optimization sensitive to noise ⇒ should use different seeds

Should also introduce and optimize a learning rate decrease
constant

Use more light-weight parallelization? (pthreads?)

What about large clusters? (MPI)
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