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Relational Learning
• Traditional Learning

• Samples are i.i.d. from an unknown distribution D

• Relational Learning

• Samples are no longer i.i.d

• Related to each other in complex ways: values of unknown 
variables depends on each other

• Dependencies could be direct or indirect (hidden)

• Examples

• Web page classification

• Scientific document classification

• Need a form of collective prediction
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Predicting House Price

• Price is a function of quality/desirability of neighborhood

• Which in turn is a function of quality/desirability of other houses

• This is the relational aspect of the price

• “Location Location Location”



Predicting House Price
• However there is more to it
• The Non-Relational aspect of price
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• One can view this as the “intrinsic price”

Predicting House Price
• However there is more to it
• The Non-Relational aspect of price



The Idea
• Price of a house is modeled as

price = (intrinsic price) ∗ (desirability of its location)
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The Idea
• In fact we compute the log of the price
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Our Contribution

• A novel technique for relational regression problems

• Allows relationships via the hidden variables

• Allows non-linear likelihood functions

• Propose efficient training and inference algorithm

• Apply it to the house price prediction problem
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• Any form of smooth interpolation is good

• Kernel Interpolation

• Local Weighted Linear Regression
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The Inference Algorithm
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The Learning Algorithm
• Done by maximizing the 

likelihood of the data

• Achieved by minimizing 
the negative log-
likelihood function wrt 

• Boils down to 
minimizing energy loss
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The Learning Algorithm

• Two phase: generalized EM type

• Phase 1: 
• Keep      fixed and optimize with respect to    

• The above loss reduces to

• Sparse linear system: was solved using conjugate gradient

W Z

L(W,Z) =
1
2

N∑

i=1

(Y i − (G(W,Xi
h) + H(ZN i , Xi

nb))
2 +

r

2
||Z||2)

L(Z) =
r

2
||Z||2 +

1
2

N∑

i=1

(Y i − (G(W,Xi
h) + U i · Z))2



The Learning Algorithm

• Phase II: 
• Keep      fixed and optimize with respect to    

• The parameters are shared among samples

• Neural network was optimized using simple gradient decent
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1
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The General Framework
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Experiments

• Dataset
• Houses from Los Angeles Country transacted only in 2004
• They span 1754 census tracts and 28 school district
• A total of around 70,000 samples 
• We used a total of 19 features in  

• living area, year built, # bedrooms, # bathrooms, pool, prior sale 
price, parking spaces, parking types, lot acerage, land value, 
improvement value, % improvement, new construction, foundation, 
roof type, heat type, site influence, and gps coordinates

• We used 6 features as part of 
• median house hold income, average time of commute to work, 

proportion of units owner occupied, and academic performance 
index
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Experiments

• Dataset
• All variables containing any form of price/area/income 

information were mapped into log space
• Non-numeric discrete variables were coded using a 

1-of-K coding scheme
• Only Single Family Residences were estimated
• A total of 42025 complete labeled samples
• Training set

• 37822 (90%)

• Test set
• 4203 (10%)



Baseline Methods

• Nearest Neighbor

• Linear Regression

• Locally Weighted Linear Regression

• Fully Connected Neural Network



Results

Model Class Model < 5% < 10% < 15%

Non-Parametric K - Nearest Neighbor 25.41 47.44 64.72

Parametric Linear Regression 26.58 48.11 65.12

Non-Parametric Locally Weighted Regression 32.98 58.46 75.21

Parametric Fully Connected Neural 
Network

33.79 60.55 76.47

Hybrid Relational Factor Graph 39.47 65.76 81.04

• Absolute Relative Forecasting error is computed

errori =
|Pri −Ai|

Ai
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Learnt Desirability Manifold



Thank You Very Much!!!



• Direct dependencies between    is not captured

• First factor

• Non-relational: captures dependencies between individual 
variables and the price

• Second factor

• Relational: captures the influence on the price of a house 
from other (related houses) via the hidden variables

•                   non-parametric estimate of desirability of the 
location of the house, obtained from related houses
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Real Estate Price Prediction



•                could take any smooth form

• Kernel Interpolation

• Local Weighted Linear Regression
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• The total energy associated with a single sample is
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• The factor graph is

Real Estate Price Prediction


