Discovering Hidden

Structure of House Prices

with Relational Latent

Manifold Model

Sumit Chopra Trivikraman Thampy John Leahy Andrew Caplin Yann LeCun

Courant Institute of Mathematical Sciences
\&

Department of Economics New York University

Relational Learning

- Traditional Learning
- Samples are i.i.d. from an unknown distribution D
- Relational Learning
- Samples are no longer i.i.d
- Related to each other in complex ways: values of unknown variables depends on each other
- Dependencies could be direct or indirect (hidden)
- Examples
- Web page classification
- Scientific document classification
- Need a form of collective prediction

Predicting House Price

- "Location Location Location"

Predicting House Price

- "Location Location Location"

Predicting House Price

- "Location Location Location"

Predicting House Price

- "Location Location Location"

- Price is a function of quality/desirability of neighborhood
- Which in turn is a function of quality/desirability of other houses
- This is the relational aspect of the price

Predicting House Price

- However there is more to it
- The Non-Relational aspect of price

Predicting House Price

- However there is more to it
- The Non-Relational aspect of price

I bedroom, I bathroom

Predicting House Price

- However there is more to it
- The Non-Relational aspect of price

I bedroom, I bathroom

4 bedroom, 3 bathroom

Predicting House Price

- However there is more to it
- The Non-Relational aspect of price

I bedroom, I bathroom

4 bedroom, 3 bathroom

- One can view this as the "intrinsic price"

The Idea

- Price of a house is modeled as
price $=($ intrinsic price $) *($ desirability of its location $)$

$$
X_{h}
$$

$$
X_{n b}
$$

The Idea

- In fact we compute the log of the price

Our Contribution

- A novel technique for relational regression problems
- Allows relationships via the hidden variables
- Allows non-linear likelihood functions
- Propose efficient training and inference algorithm
- Apply it to the house price prediction problem

Estimating Desirabilities

Estimating Desirabilities

Estimating Desirabilities

Estimating Desirabilities

Estimating Desirabilities

- Any form of smooth interpolation is good
- Kernel Interpolation

$$
H\left(Z_{\mathcal{N}^{i}}, X_{n b}^{i}\right)=\sum_{j \in \mathcal{N}^{i}} \operatorname{Ker}\left(X_{n b}^{i}, X_{n b}^{j}\right) Z^{j}
$$

- Local Weighted Linear Regression

$$
\begin{aligned}
&\left(\beta_{Z_{\mathcal{N}^{i}}}^{*}, \alpha_{Z_{\mathcal{N}^{i}}}^{*}\right)=\operatorname{argmin}_{\beta, \alpha} \sum_{j \in \mathcal{N}^{i}}\left(Z^{j}-\left(\beta+\alpha X^{j}\right)\right)^{2} \operatorname{Ker}\left(X_{n b}^{i}, X_{n b}^{j}\right) \\
& H\left(Z_{\mathcal{N}^{i}}, X_{n b}^{i}\right)=\beta_{Z_{\mathcal{N}^{i}}}^{*}+\alpha_{Z_{\mathcal{N}_{i}}}^{*} X^{i} \\
&= \sum_{k} U^{i k} Z^{k}
\end{aligned}
$$

The Inference Algorithm

The Learning Algorithm

$$
\mathcal{L}(W, \mathbf{Z})=\frac{1}{2} \sum_{i=1}^{N}\left(Y^{i}-\left(G\left(W, X_{h}^{i}\right)+H\left(Z_{\mathcal{N}^{i}}, X_{n b}^{i}\right)\right)^{2}+R(\mathbf{Z})\right.
$$

The Learning Algorithm

$$
\mathcal{L}(W, \mathbf{Z})=\frac{1}{2} \sum_{i=1}^{N}\left(Y^{i}-\left(G\left(W, X_{h}^{i}\right)+H\left(Z_{\mathcal{N}^{i}}, X_{n b}^{i}\right)\right)^{2}+\frac{r}{2}\|Z\|^{2}\right)
$$

- Two phase: generalized EM type
- Phase I:
- Keep W fixed and optimize with respect to \mathbf{Z}
- The above loss reduces to

$$
\mathcal{L}(\mathbf{Z})=\frac{r}{2}\|\mathbf{Z}\|^{2}+\frac{1}{2} \sum_{i=1}^{N}\left(Y^{i}-\left(G\left(W, X_{h}^{i}\right)+U^{i} \cdot \mathbf{Z}\right)\right)^{2}
$$

- Sparse linear system: was solved using conjugate gradient

The Learning Algorithm

$$
\mathcal{L}(W, \mathbf{Z})=\frac{1}{2} \sum_{i=1}^{N}\left(Y^{i}-\left(G\left(W, X_{h}^{i}\right)+H\left(Z_{\mathcal{N}^{i}}, X_{n b}^{i}\right)\right)^{2}+R(\mathbf{Z})\right.
$$

- Phase II:
- Keep Z fixed and optimize with respect to W
- The parameters are shared among samples
- Neural network was optimized using simple gradient decent

The General Framework

$E(W, \mathbf{Z}, \mathbf{Y}, \mathbf{X})=\sum_{i=1}^{N} E_{x y z}^{i}\left(W_{x y z}, X^{i}, Y^{i}, D^{i}\right)+E_{y y}^{i}\left(W_{y y}, Y^{i}, \mathbf{Y}\right)+E_{z z}^{i}\left(W_{z z}, D^{i}, \mathbf{Z}\right)$

Experiments

- Dataset
- Houses from Los Angeles Country transacted only in 2004
- They span 1754 census tracts and 28 school district
- A total of around 70,000 samples
- We used a total of 19 features in X_{h}
- living area, year built, \# bedrooms, \# bathrooms, pool, prior sale price, parking spaces, parking types, lot acerage, land value, improvement value, \% improvement, new construction, foundation, roof type, heat type, site influence, and gps coordinates
- We used 6 features as part of $X_{n b}$
- median house hold income, average time of commute to work, proportion of units owner occupied, and academic performance index

Experiments

- Dataset
- All variables containing any form of price/area/income information were mapped into log space
- Non-numeric discrete variables were coded using a I-of-K coding scheme
- Only Single Family Residences were estimated
- A total of 42025 complete labeled samples
- Training set
- 37822 (90\%)
- Test set
- 4203 (I0\%)

Baseline Methods

- Nearest Neighbor
- Linear Regression
- Locally Weighted Linear Regression
- Fully Connected Neural Network

Results

- Absolute Relative Forecasting error is computed

$$
\text { error }^{i}=\frac{\left|P r^{i}-A^{i}\right|}{A^{i}}
$$

Model Class	Model	$<5 \%$	$<10 \%$	$<15 \%$
Non-Parametric	K - Nearest Neighbor	25.41	47.44	64.72
Parametric	Linear Regression	26.58	48.11	65.12
Non-Parametric	Locally Weighted Regression	32.98	58.46	75.21
Parametric	Fully Connected Neural Network	33.79	60.55	76.47
Hybrid	Relational Factor Graph	39.47	65.76	81.04

Results

Model Class	Model	$<5 \%$	$<10 \%$	$<15 \%$
Non-Parametric	K - Nearest Neighbor	25.41	47.44	64.72
Parametric	Linear Regression	26.58	$\mathbf{4 8 . 1 1}$	$\mathbf{6 5 . 1 2}$
Non-Parametric	Locally Weighted Regression	32.98	58.46	75.21
Parametric	Fully Connected Neural			
Network	33.79	60.55	76.47	
Hybrid	Relational Factor Graph	39.47	65.76	81.04

Results

Model Class	Model	$<5 \%$	$<10 \%$	$<15 \%$
Non-Parametric	K - Nearest Neighbor	25.41	47.44	64.72
Parametric	Linear Regression	26.58	48.11	65.12
Non-Parametric	Locally Weighted Regression	32.98	58.46	75.21
Parametric	Fully Connected Neural			
Network	33.79	60.55	76.47	
Hybrid	Relational Factor Graph	39.47	65.76	81.04

Results

Model Class	Model	$<5 \%$	$<10 \%$	$<15 \%$
Non-Parametric	K - Nearest Neighbor	25.41	47.44	64.72
Parametric	Linear Regression	26.58	48.11	65.12
Non-Parametric	Locally Weighted Regression	32.98	58.46	75.21
Parametric	Fully Connected Neural Network	33.79	60.55	76.47
Hybrid	Relational Factor Graph	39.47	65.76	81.04

Results

Model Class	Model	$<5 \%$	$<10 \%$	$<15 \%$
Non-Parametric	K - Nearest Neighbor	25.41	47.44	64.72
Parametric	Linear Regression	26.58	48.11	65.12
Non-Parametric	Locally Weighted Regression	32.98	58.46	75.21
Parametric	Fully Connected Neural Network	33.79	60.55	76.47
Hybrid	Relational Factor Graph	39.47	65.76	81.04

Thank You Very Much!!!

Real Estate Price Prediction

- Direct dependencies between Y is not captured
- First factor
- Non-relational: captures dependencies between individual variables and the price

$$
E_{x y z}^{i}\left(Y^{i}, X^{i}, D^{i}\right)=\left(Y^{i}-\left(G\left(W_{x y z}, X_{h}^{i}\right)+D^{i}\right)\right)^{2}
$$

- Second factor
- Relational: captures the influence on the price of a house from other (related houses) via the hidden variables

$$
E_{z z}^{i}\left(D^{i}, H\left(X_{n b}^{i}, Z_{\mathcal{N}^{i}}\right)\right)=\left(D^{i}-H\left(X_{n b}^{i}, Z_{\mathcal{N}^{i}}\right)\right)^{2}
$$

- $H\left(X_{n b}^{i}, Z_{\mathcal{N}^{i}}\right)$ non-parametric estimate of desirability of the location of the house, obtained from related houses

Real Estate Price Prediction

- $H\left(X_{n b}^{i}, Z_{\mathcal{N}^{i}}\right)$ could take any smooth form
- Kernel Interpolation

$$
H\left(X_{n b}^{i}, Z_{\mathcal{N}^{i}}\right)=\sum_{j \in \mathcal{N}^{i}} \operatorname{Ker}\left(X_{n b}, X_{n b}^{j}\right) Z^{j}
$$

- Local Weighted Linear Regression

$$
\begin{aligned}
\left(\beta^{*}, \alpha^{*}\right)=\arg \min _{\beta, \alpha} \sum_{j \in \mathcal{N}^{i}}\left(Z^{j}\right. & \left.-\left(\beta+\alpha X^{j}\right)\right)^{2} \operatorname{Ker}\left(X^{i}, X^{j}\right) \\
H\left(X_{n b}^{i}, Z_{\mathcal{N}^{i}}\right) & =\beta^{*}+\alpha^{*} X \\
& =\sum_{j \in \mathcal{N}^{i}} a^{j} Z^{j}
\end{aligned}
$$

Real Estate Price Prediction

- The total energy associated with a single sample is

Real Estate Price Prediction

- The factor graph is

