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About me

I’m researching recurrent networks as probability models of
sequential data.

Data

ultimately : audio, video, language, music, robotic control

currently: toy bit sequences, symbolic melodies

Models

recurrent nets with regularization to improve BPTT

temporally hierarchical nets

partly linear nets

How to detect/model long-term and multi-scale patterns???
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What I’ll talk about today

Temporal Restricted Boltzmann Machines

1 What they are

2 How they are trained
3 One way things can go wrong when learning:

long sequences
many non-overlapping sequences
sequences with long-term statistical dependencies

4 Ideas to get around this problem (some results)
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Temporal RBM

The ones with temporal connections between hidden units.

Ask for picture!
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3 Phase Learning Algo

1 Optimize W as RBM of non-temporal P(v)
1 Project sequence into observation space.
2 Learn (RBM) density model of projected points.

2 Optimize U for given z1..T

Choosing z (t) = EW [h|v (t)]

3 Continue to optimize W ,U to model v (1..t)

W by Contrastive Divergence
U by backprop of bias gradient
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How United States of America Goes Wrong

v = ”united states of america united states of america ...”

united → 00 america → 01
of → 10 states → 11

Phase 1 Suppose the RBM learns the mapping above
Phase 2 First component of z must perform XOR with 1-

layer net ... not possible!
Phase 3 W ,U are nowhere near a solution, better to restart

with joint optimization.
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Semantics of zt in TRBM

log P(v (1), v (2), ..., v (t), ...)

=
∑

t

log P(v (t)|z(t−1)) hidden markov assumption

∝
∑

t

log
∑
h

e−(v (t)W+z(t−1)U)h RBM

∝
∑

t

e−freeEnergy(v (t)|z(t−1))

zt must be predictive of FUTURE v (t+1), z(t+1)

(within constraints imposed by functional form of zt)
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Why is Phase 2 hard?

Phase 2 begins with z(t) = EW [h|v (t)], and tries to solve for U:

sigm(Uz(1) + b) = z(2)

sigm(Uz(2) + b) = z(3)

. . .

sigm(Uz(T−1) + b) = z(T )

Shallow: When T is greater than the number of dimensions of
z(t), then no solution generally exists (linear separability).

Deep: Many (most?) trajectories of length > K through {0, 1}K

are not possible with an iterated system of form
z(t) = sgn(Uz(t−1) + b), though long trajectories exist.
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What to do?

Avoid the problem:

Use sufficiently large Z vectors, jump straight to phase 3

Add fresh units to the system for phase 3

[Try to] solve the problem:

Decouple z(t) from P(h|v (t)), so that z(t) = f (v (t), z(t−1))

Differentiable f enables optimization by BPTT (really!)
I have some ideas (Yoshua too!) to improve BPTT
some preliminary results... (ongoing work)
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Fin

Questions? Comments?
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