Learning Long Sequences with TRBM

James Bergstra

Aug 7-11 2007

James Bergstra CIFAR NCAP Summer School

I'm researching recurrent networks as probability models of sequential data.

Data

- ultimately : audio, video, language, music, robotic control
- currently: toy bit sequences, symbolic melodies

Models

- recurrent nets with regularization to improve BPTT
- temporally hierarchical nets
- partly linear nets

How to detect/model long-term and multi-scale patterns???

Temporal Restricted Boltzmann Machines

- What they are
- 2 How they are trained
- One way things can go wrong when learning:
 - long sequences
 - many non-overlapping sequences
 - sequences with long-term statistical dependencies
- Ideas to get around this problem (some results)

The ones with temporal connections between hidden units. Ask for picture!

- Optimize W as RBM of non-temporal P(v)
 - Project sequence into observation space.
 - Learn (RBM) density model of projected points.
- **2** Optimize U for given $z^{1..T}$
 - Choosing $z^{(t)} = E_W[h|v^{(t)}]$
- Solution Continue to optimize W, U to model $v^{(1..t)}$
 - W by Contrastive Divergence
 - U by backprop of bias gradient

v = "united states of america united states of america ..."

 $united \rightarrow 00 \quad america \rightarrow 01$ $of \rightarrow 10 \quad states \rightarrow 11$

- Phase 1 Suppose the RBM learns the mapping above
- Phase 2 First component of *z* must perform XOR with 1-layer net ... not possible!
- Phase 3 W, U are nowhere near a solution, better to restart with joint optimization.

Semantics of z_t in TRBM

$$\log P(v^{(1)}, v^{(2)}, ..., v^{(t)}, ...)$$

$$= \sum_{t} \log P(v^{(t)} | z^{(t-1)}) \quad hidden \text{ markov assumption}$$

$$\propto \sum_{t} \log \sum_{h} e^{-(v^{(t)}W + z^{(t-1)}U)h} \quad RBM$$

$$\propto \sum_{t} e^{-freeEnergy(v^{(t)} | z^{(t-1)})}$$

 z_t must be predictive of FUTURE $v^{(t+1)}$, $z^{(t+1)}$ (within constraints imposed by functional form of z_t)

Why is Phase 2 hard?

Phase 2 begins with $z^{(t)} = E_W[h|v^{(t)}]$, and tries to solve for U:

$$sigm(Uz^{(1)} + b) = z^{(2)}$$

 $sigm(Uz^{(2)} + b) = z^{(3)}$

$$sigm(Uz^{(T-1)}+b)=z^{(T)}$$

Shallow: When T is greater than the number of dimensions of $z^{(t)}$, then no solution generally exists (linear separability).

Deep: Many (most?) trajectories of length > K through $\{0,1\}^K$ are not possible with an iterated system of form $z^{(t)} = sgn(Uz_{(t-1)} + b)$, though long trajectories exist.

Avoid the problem:

- Use sufficiently large Z vectors, jump straight to phase 3
- Add fresh units to the system for phase 3

[Try to] solve the problem:

- Decouple $z^{(t)}$ from $P(h|v^{(t)})$, so that $z^{(t)} = f(v^{(t)}, z^{(t-1)})$
 - Differentiable f enables optimization by BPTT (really!)
 - I have some ideas (Yoshua too!) to improve BPTT
 - some preliminary results... (ongoing work)

Questions? Comments?