1. List the elements of $\{a, a b\}^{*}$. Find a way to describe strings in this language, i.e., find a predicate $P(s)$ such that $P(s)$ is true iff s in $\{a, a b\}^{*}$, for all strings s over alphabet $\{a, b\}$.
2. Find three different examples of a language L over alphabet $\{a, b, c\}$ such that $L=L^{*}$.
3. Give a DFA for each language below.
a) $L_{1}=\left\{s \in\{0,1\}^{*}: \mathrm{s}\right.$ contains at least 2 characters and $\mathrm{s}^{\prime} \mathrm{s}$ second character is a 1$\}$
b) $L_{2}=\left\{s \in\{0,1\}^{*}: \mathrm{s}\right.$ contains fewer than 2 characters $\}$
c) $L_{3}=\left\{s \in\{a, b\}^{*}\right.$: every a in s is eventually followed by b $\}$. For example, $a a a b \in L_{3}$ because there is a b that follows every a - even though it is not immediately after the first two a s.
d) $L_{4}=\left\{s \in\{a, b\}^{*}\right.$: the third-last character of s is a b$\}$
